Главные вкладки

    Календарно-тематическое планирование по алгебре (7, 8, 9 класс) на тему:
    рабочая программа по алгебре 7,8,9 классы

    Рабочая программа по алгебре для 7,8,9 классов к учебнику Алимова Ш.А..(3 часа в неделю)

    Скачать:

    ВложениеРазмер
    Файл rp_algebra_7-9_.docx73.63 КБ

    Предварительный просмотр:

                    Муниципальное бюджетное общеобразовательное учреждение

    «Школа № 11» города Сарова

    «Рассмотрена»

    на заседании МО учителей

    _________________________

    Протокол №__  от ___.___.2016

    Руководитель МО

    _____________/______________

    «Согласована»

    Заместитель директора

    ____________Кохаева Е.В.

    «____» _________ 2016 г.

    «Утверждаю»

    директор МБОУ Школы № 11

    ______________ Гузова Е.Н.

    «____» __________ 2016 г.

    РАБОЧАЯ  ПРОГРАММА

                                                             по    алгебре

    Уровень образования  основное общее

    7- 9 классы   

    (2016 - 2017 учебный год)

    Учитель   Чимрова Татьяна Борисовна

    2016 год

                                                               Пояснительная записка

    Предмет Алгебра изучается на ступени основного общего образования в качестве обязательного предмета в 7-9 классах в общем объеме 306 часов (34 учебных недели в год): в 7 классе – 102 часа, в 8 классе – 102 часа, в 9 классе – 102 часа

    Используемый учебно-методический комплект

     Программа

     Рабочая программа по алгебре 7-9 класса составлена на основе следующих документов

    - Примерная программа основного общего образования по математике. (Сборник нормативных документов. Математика. М.: Дрофа, 2004 г.)

    -Программа для общеобразовательных учреждений (Сборник “Программы для общеобразовательных учреждений: Алгебра 7-9 кл.”/ Сост. Т.А. Бурмистрова, 2-е изд.,.- М. Просвещение, 2009).

    -Стандарт основного общего образования по математике //Математика в школе. – 2004г,- №4, - с.4

    Учебник

    Алгебра. 7 класс: учеб. для общеобразоват. учреждений (авторы: Ш. А. Алимов, Ю. М. Колягин, Ю. В. Сидоров и др.)-М.: Просвещение, 2009.

         Алгебра. 8 класс: учеб. для общеобразоват. учреждений (Ш. А. Алимов, Ю. М. Колягин, Ю. В. Сидоров и др.)-М.: Просвещение, 2010.

        Алгебра. 9 класс: учеб. для общеобразоват. учреждений (Ш. А. Алимов, Ю. М. Колягин, Ю. В. Сидоров и др.)-М.: Просвещение, 2011.

            

    Электронные ресурсы

     

    1. http://school-assistant.ru/ - теоретические сведения по алгебре
    2. InternetUrok.ru/ – видеоуроки
    3. https://sdamgia.ru/ - подготовка к ГИА

     

    Данная рабочая программа полностью отражает базовый уровень подготовки школьников по разделам программы. Она конкретизирует содержание тем образовательного стандарта и дает примерное распределение учебных часов по разделам курса.

    Программа выполняет две основные функции. Информационно – методическая функция позволяет всем участникам образовательного процесса получить представление о целях, содержании, общей стратегии обучения, воспитания и развития учащихся средствами данного учебного предмета.

    Организационно – планирующая функция предусматривает выделение этапов обучения, структурирование учебного материала, определение его качественных и количественных характеристик на каждом из этапов. Рабочая программа по алгебре составлена на основе федерального компонента государственного стандарта основного общего образования.

    Рабочая  программа конкретизирует содержание предметных тем образовательного стандарта и дает примерное распределение учебных часов по разделам курса.

    Рабочая программа выполняет две основные функции:

    Информационно-методическая функция позволяет всем участникам образовательного процесса получить представление о целях, содержании, общей стратегии обучения, воспитания и развития учащихся средствами данного учебного предмета.

    Организационно-планирующая функция предусматривает выделение этапов обучения, структурирование учебного материала, определение его количественных и качественных характеристик на каждом из этапов, в том числе для содержательного наполнения промежуточной аттестации учащихся.

    В курс изучения алгебры в 8 классе внесены изменения. Изменён порядок изучения учебного материала. Тема «Приближённые вычисления» изучается  последней. Это обусловлено тем, что в курсе геометрии 8 класса при решении задач на темы «Площади», «Теорема Пифагора» необходимо знать операцию « Извлечение корней», а изучение этого понятия в курсе алгебры 8 класса начинается позже.

    Содержание учебного предмета

       7 КЛАСС

    1. Алгебраические выражения

    Числовые выражения. Алгебраические выражения. Формулы. Свойства арифметических действий. Правила раскрытия скобок.

    Основная  цель — систематизировать и обобщить сведения о числовых выражениях, полученные в курсе математики 5 -6 классов; сформировать понятие алгебраического выражения, систематизировать сведения о преобразованиях алгебраических выражений, приобретенные учащимися при изучении курса математики 5-6 классов.

    Первая тема курса 7 класса является связующим звеном между курсом математики 5—6 классов и курсом алгебры. При ее изучении развиваются и закрепляются вычислительные навыки, повторяются и систематизируются начальные сведения о преобразованиях выражений.

    Повторяемые правила действий с рациональными числами являются основой, как для изучения данной темы, так и всего курса алгебры.

    Формирование алгебраических представлений будет и в дальнейшем вестись с постоянной опорой на известные учащимся арифметические понятия, свойства, правила. В связи с этим рекомендуется первые два-три урока полностью посвятить повторению курса математики 5—6 классов, уделяя особое внимание развитию вычислительной культуры учащихся.

    Через запись законов и свойств арифметических действий с помощью букв, запись формул четного и нечетного чисел и пp. осуществляется знакомство учащихся с формулами. Вплоть до изучения темы «Алгебраические дроби" принимается условная договоренность: если в формуле алгебраическое выражение записано в знаменателе, то его значение не может быть равно нулю.

    При рассмотрении преобразований выражении формально-оперативные умения пока остаются на том же уровне, который был достигнут в 5-6 классах. Однако здесь учащиеся знакомятся с новым понятием алгебраической суммы, обосновывают правила раскрытия скобок соответствующими свойствами сложения и вычитания, используют свойства действий, чтобы, предварительно упростив алгебраическое выражение, найти его числовое значение.

    В конце изучения данной темы рекомендуется провести обобщающий урок по всей теме, как бы подводя итог введению в алгебру.

    1. Уравнения с одним неизвестным

    Уравнение и его корни. Уравнения с одним неизвестным, сводящиеся к линейным. Решение задач с помощью уравнений.

    Основная цель — систематизировать сведения о решении уравнений с одним неизвестным; сформировать умение решать уравнения, сводящиеся к линейным.

    При изучении данной темы по сравнению с тем, что было известно учащимся ранее об уравнениях, усиливается роль теоретических знаний: вводятся определение уравнения и его корня, рассматриваются свойства уравнений, дается понятие линейного уравнения, исследуется вопрос о числе корней линейного уравнения.

    Понятие равносильности уравнений на этом этапе обучения не рассматривается. Вместо этого дается пояснение того, что при решении уравнения первой степени с одним неизвестным переходят от данного уравнения к более простому, имеющему те же корни; поэтому проверку уравнения полезно делать только для того, чтобы убедиться в правильности вычислений.

    Продолжается работа по формированию у учащихся умений использовать аппарат уравнений как средство для решения текстовых задач.

    1. Одночлены и многочлены

    Степень с натуральным показателем и ее свойства. Одночлен. Многочлен. Сложение, вычитание и умножение многочленов. Деление одночлена и многочлена на одночлен.

    Основная цель — выработать умение выполнять действия над степенями с натуральными показателями, действия сложения, вычитания и умножения многочленов.

    В данной теме дается определение степени с натуральным показателем. Понятие стандартного вида числа большего 10 и запись чисел в виде суммы разрядных слагаемых используются для иллюстрации применения понятия степени с натуральным показателем.

    Впервые доказательство теоретического положения в курсе математики проводится при доказательстве свойств степени, которое осуществляется параллельно с аналогичными рассуждениями для степеней, основанием которых является число. Особое внимание следует уделить формированию навыков применения свойств степени с натуральным показателем в преобразованиях. Так как эти свойства находят применение при умножении и делении одночленов, возведении одночленов в степень, то основная нагрузка при закреплении этих навыков ложится именно на материал этого раздела.

    Преобразования многочленов играют важную роль в формировании умения выполнять преобразования алгебраических выражений. Вводится понятие многочлена стандартного вида. Изучаются алгоритмы сложения, вычитания и умножения многочленов. Важно, чтобы учащиеся поняли, что при выполнении этих действий над многочленами в результате получается также многочлен. Деление многочленов и одночленов на одночлен дается в ознакомительном плане с целью пропедевтики темы «Алгебраические дроби».

    1. Разложение многочленов на множители

    Вынесение общего множителя за скобки. Способ группировки. Формулы сокращенного умножения: (а + b) (а - b)=a2-b2, (а ± b)2 = а2 ± 2ab + b2.

    Основная цель — выработать умения выполнять разложение многочленов на множители различными способами и применять формулы сокращенного умножения для преобразований  алгебраических выражений.

    При изучении данной темы рассматриваются такие способы разложения на множители, как вынесение общего множителя за скобки, группировка, использование формул сокращенного умножения. Объектом пристального внимания рекомендуется сделать  темы «Способ группировки» и «Применение нескольких способов разложения на множители» как традиционно трудные, но необходимые для подготовки к изучению темы «Алгебраические дроби».

    Применение разложения на множители при решении уравнений не является обязательным, так же как и изучение формул .

    Формулы же (а + b)(а - b) = а2 - b2, (а ± b)2 = а2 ± 2ab + b2 должны быть усвоены учащимися и уверенно применяться ими в простейших случаях как для выполнения умножения, так и для разложения на множители.

    При изучении заключительного материала темы особенно внимательно следует подойти к подбору упражнений на применение различных способов разложения многочленов на множители. Возможно ограничиться лишь выполнением упражнений обязательного уровня.

    Выполнение различных упражнений на преобразования целых выражений подготавливает учащихся к изучению темы «Алгебраические дроби».

    1. Алгебраические дроби

    Алгебраическая дробь. Сокращение дробей. Сложение, вычитание, умножение и деление алгебраических дробей. Совместные действия над алгебраическими дробями.

    Основная цель - выработать умение выполнять преобразования алгебраических дробей.

    Изучение темы начинается с введения понятия алгебраической дроби, ее числового значения и допустимых значений букв. Здесь же принимается важное для изучения в основной школе условие: буквы, входящие в алгебраическую дробь, принимают лишь допустимые значения.

    Регулярное повторение правил действий с обыкновенными дробями существенно облегчает трудности изучения темы. Поэтому важное место в теме отводится сопоставлению алгоритмов действий над обыкновенными и алгебраическими дробями.

    Важно не спешить переходить к выполнению комбинированных упражнений прежде, чем будут усвоены основные алгоритмы сложения, вычитания, умножения и деления алгебраических дробей. Не следует завышать уровень сложности упражнений на все действия с алгебраическими дробями. Соответствующие задания не должны быть излишне громоздкими и трудоемкими. Целесообразно добиваться безошибочного выполнения преобразований выражений, содержащих два-три действия.

    1. Линейная функция и ее график

    Прямоугольная система координат на плоскости. Понятие функции. Способы задания функции. График функции. Функция у = кх и ее график. Линейная функция и ее график.

    Основная цель — сформировать представление о числовой функции на примере линейной функции.

    Данная тема является начальным этапом в обеспечении систематической функциональной подготовки учащихся. Здесь вводятся такие понятия, как «функция», «функциональная зависимость», «независимая переменная», «график функции». Функция трактуется как зависимая переменная. Так как в 7 и 8 классах конкретные функции определены на множестве всех действительных чисел, то на данном этапе изучения функции вопрос об области ее определения в явном виде не ставится.

    Рассматриваются способы задания функции. Начинается работа по формированию у учащихся умений находить значение функции, заданной формулой, графиком, по известному значению аргумента, по графику функции определять значение аргумента, если значение функции задано.

    Изучению линейной функции предшествует изучение функции у = кх и ее графика. Рассматривается зависимость расположения графика функции от значений коэффициента k. Учащиеся должны понимать, как влияет знак k на расположение графика. Здесь же на физических примерах происходит первое знакомство с понятиями прямой и обратной пропорциональностей.

    Построение графика линейной функции и чтение графика — важнейшие умения, необходимые учащимся для изучения как других разделов математики, так и смежных дисциплин. Формирование этих умений ведется не только при решении традиционных математических примеров, но и в процессе моделирования реальных процессов, протекающих по закону линейной зависимости.

    1. Системы уравнений с двумя неизвестными

    Система уравнений с двумя неизвестными. Решение системы уравнений первой степени с двумя неизвестными способами подстановки и сложения, графическим способом. Решение задач методом составления систем уравнений.

    Основная цель — научить решать системы линейных уравнений с двумя неизвестными различными способами и использовать полученные навыки при решении задач.

    Изучение систем уравнений распределяется между курсами 7 и 8 классов. В 7 классе вводится понятие системы уравнений и рассматриваются системы линейных уравнений с двумя неизвестными.

    Основное внимание при обучении решению систем уравнений уделяется способам подстановки и сложения. Графический способ используется для иллюстрации наличия или отсутствия решений системы.

    1. Введение в комбинаторику

    Исторические комбинаторные задачи. Различные комбинации с выбором из трех элементов. Таблица вариантов. Правило произведения. Подсчет вариантов с помощью графов.

    Основная цель — развить комбинаторное мышление, сформировать умение организованного перебора упорядоченных и неупорядоченных комбинаций из двух-четырех элементов.

    В данной теме интегрируются арифметические, начальные алгебраические и геометрические знания учащихся. Рассматриваются исторические комбинаторные задачи, способы составления фигурных чисел, магических и латинских квадратов, выводится формула n-го треугольного числа. В ходе организованного перебора различных комбинаций элементов двух множеств обосновывается правило произведения. С его помощью решаются простейшие комбинаторные задачи.

    Дополнительно приводится вывод формулы числа перестановок из n элементов, решается задача подсчета числа способов разбиения элементов выборки на две группы, проводятся рассуждения о возможности принятия или опровержения гипотезы.

    1. Повторение. Решение задач

      8 КЛАСС

                 1.   Неравенства

    Положительные и отрицательные числа. Числовые неравенства, их свойства. Сложение и умножение неравенств. Строгие и нестрогие неравенства. Неравенства с одним неизвестным. Системы неравенств с одним неизвестным. Числовые промежутки.

    Основная цель — сформировать у учащихся умение решать неравенства первой степени с одним неизвестным и их системы.

    Изучение темы начинается с повторения свойств чисел, что послужит, в частности, опорой при формировании умения решать неравенства цервой степени с одним неизвестным.

    Свойства числовых неравенств составляют основу решения неравенств первой степени с одним неизвестным. При доказательстве свойств неравенств используется прием, состоящий в сравнении с нулем разности левой и правой частей неравенств. Доказываются теоремы о почленном сложении и умножении неравенств. Этих примеров достаточно для того, чтобы учащиеся имели представление о том, как доказываются неравенства. Выработка у учащихся умения доказывать неравенства не предусматривается. При решении неравенств и их систем используется графическая иллюстрация. Здесь же вводится понятие числовых промежутков.

    Умение решать неравенства и их системы является основой  для решения квадратных, показательных, логарифмических неравенств.

           При изучении этой темы учащиеся знакомятся с понятиями  уравнений и неравенств, содержащих неизвестное под знаком модуля, получают представления о геометрической иллюстрации уравнения | х | = а и неравенств | х | > а, \ х | < а. Формирование умений решать такие уравнения и  неравенства не предусматривается.

           2.   Приближенные вычисления

    Приближенные значения величин. Погрешность приближения. Оценка погрешности. Округление чисел. Относительная погрешность. Простейшие вычисления на калькуляторе. Стандартный вид числа. Вычисления на калькуляторе степени числа и числа, обратного данному. Последовательное выполнение нескольких операций на калькуляторе. Вычисления на калькуляторе с использованием ячеек памяти.

    Основная цель — познакомить учащихся с понятием погрешности приближения как показателем точности и качества приближения, выработать умение производить вычисления с помощью калькулятора.

            Учащиеся знакомятся с понятиями приближенных значений  величин и погрешностью приближения, учатся оценивать погрешность приближения, повторяют правила округления, получают представления об истории развития вычислительной техники, о задачах, решаемых с помощью ПК. Обучение работе на калькуляторе можно проводить в течение всего учебного года при рассмотрении различных разделов программы.

    1. Квадратные корни

    Понятие арифметического квадратного корня. Действительные числа. Квадратный корень из степени, произведения и дроби.

    Основная цель — систематизировать сведения о рациональных числах; ввести понятия иррационального и действительного чисел; изучить выполнять простейшие преобразования выражений, содержащих квадратные корни.

           Понятие иррационального числа вводится после введения понятия арифметического квадратного корня и повторения сведений о рациональных числах в связи с извлечением квадратного корня из числа. Показывается нахождение приближенных значений квадратных корней с помощью калькулятора. Дается геометрическая интерпретация действительного числа. Таким образом, учащиеся получают начальные представления о действительных числах.

    При изучении темы начинается формирование понятия тождества на примере равенства  (Введению тождества  должно предшествовать повторение понятия модуля, известного учащимся из курса математики 5—6 классов. Можно показать учащимся на числовой прямой решение уравнения | х | = а и неравенств | х | > а, | х | < а (если это не было сделано при изучении темы «Неравенства»).)

    Приводятся доказательства теорем о квадратном корне из степени, произведения, дроби. Учащиеся учатся выполнять простейшие преобразования выражений, содержащих квадратные корни. При выполнении преобразований внимание в основном должно уделяться внесению числового множителя под знак корня и вынесению его из-под знака корня. При внесении буквенного множителя под знак корня достаточно ограничиться случаем, когда буквенный множитель положителен. Специальное место должно занять освобождение от иррациональности в знаменателе дроби. Умения выполнять преобразования выражений, содержащих квадратные корни, необходимы как для продолжения изучения курса алгебры, так и в смежных дисциплинах.

          4.   Квадратные уравнения

    Квадратное уравнение и его корни. Неполные квадратные уравнения. Метод выделения полного квадрата. Решение квадратных уравнений. Разложение квадратного трехчлена на множители. Уравнения, сводящиеся к квадратным. Решение задач с помощью квадратных уравнений. Решение простейших систем, содержащих уравнение второй степени. Уравнение окружности.

    Основная цель выработать умения решать квадратные уравнения, уравнения, сводящиеся к квадратным, и применять их к решению задач.

    Изучение темы начинается с решения уравнения вида хг = а, где а > 0, и доказательства теоремы о его корнях. Затем на конкретных примерах рассматривается решение неполных квадратных уравнений.

    Метод выделения полного квадрата специально не изучается. Учащиеся на одном-двух примерах знакомятся с этим методом, чтобы осознанно воспринять вывод формулы корней квадратного уравнения. Эта формула является основной. Знание же остальных формул, которые приводятся в учебнике, не является обязательным.

    Знакомство с теоремой Виета будет полезно при доказательстве теоремы о разложении квадратного трехчлена на множители. Упражнения на применение теоремы Виета учащимся можно не выполнять, так как этот материал носит вспомогательный характер.

    Ведется работа по формированию умения в решении уравнений, сводящихся к квадратным. Здесь основное внимание уделяется уравнениям с неизвестным в знаменателе дроби, задачам, сводящимся к решению уравнений такого вида.

    Продолжается изучение систем уравнений. Учащиеся овладевают методами решения систем уравнений второй степени, причем основное внимание уделяется решению систем, в которых одно из уравнений второй степени, а другое первой, способом подстановки. Решение систем уравнений, где оба уравнения второй степени, имеет при данном изложении материала второстепенное значение.

    В конце изучения темы рассматриваются координаты середины отрезка, формула расстояния между двумя точками плоскости, уравнение окружности. Для этого используется материал из курса геометрии.

    В данной теме в связи с изучением квадратных уравнений дается понятие о комплексных числах. Знакомство с комплексными числами в алгебраической форме создает основу для расширения сформированных у учащихся представлений о числах. Этот материал не является обязательным для изучения, но может быть рассмотрен в ознакомительном плане при заключительном обобщении данной темы.

    5.   Квадратичная функция

    Определение квадратичной функции. Функции у = х2. у = ах2, у = ах2 +  + с. Построение графика квадратичной функции.

    Основная цель — научить строить график квадратичной функции.

    Изучение темы начинается с повторения знаний о линейной функции и примеров реальных процессов, протекающих по закону квадратичной зависимости. При этом повторяется разложение квадратного трехчлена на множители. Вводится понятие нулей функции.

    Далее учащиеся последовательно знакомятся с графиками и свойствами функций у = х2, у = ах2, у = х2 + рх + q, у = ах2 + bх + с.

    Построение графиков этих функций на конкретных примерах осуществляется по точкам. Основное внимание уделяется построению графика с использованием координат вершины параболы, нулей функции (если они имеются) и нескольких дополнительных точек. Преобразования же графиков являются вспомогательным материалом.

    При изучении темы формируются умения определять по графику промежутки возрастания и убывания функции, промежутки знакопостоянства, нули функции. (Нахождение наибольшего и наименьшего значений функции и решение задач с их применением не входит в число обязательных умений.)

    Здесь учащимся предоставляется возможность еще раз повторить решение систем двух уравнений, одно из которых первой, а другое второй степени.

    6.   Квадратные неравенства

    Квадратное неравенство и его решение. Решение квадратного неравенства с помощью графика квадратичной функции.

    Основная цель — выработать умение решать квадратные неравенства с помощью графика квадратичной функции.

           Первым при изучении темы приводится аналитический способ решения квадратных неравенств, который требует повторения решения систем неравенств первой степени е одним неизвестным. Однако этот способ не является основным.

    После повторения свойств квадратичной функции (нахождение координат вершины и определение направления ветвей параболы) учащиеся овладевают методом решения квадратных неравенств с помощью графика квадратичной функции.

    При наличии времени можно познакомить учащихся с методом интервалов.

           7.   Повторение. Решение задач

          Закрепление знаний, умений и навыков, полученных на уроках по данным темам (курс алгебры 8 класса).

    9 КЛАСС    

               1. Повторение курса алгебры 8 класса

              2. Алгебраические уравнения. Системы нелинейных уравнений.

    Деление многочленов. Решение алгебраических уравнений. Уравнения, сводящиеся к алгебраическим. Системы нелинейных уравнений с двумя неизвестными. Различные способы решения систем уравнений. Решение задач с помощью систем уравнении.

    Основная цель — обучить делению многочленов, решению алгебраических уравнений и систем уравнений.

    Данная тема продолжает и завершает изучение алгебраических уравнений и их систем, которые рассматриваются в школьном курсе алгебры. От рассмотрения линейных и квадратных уравнений учащиеся переходят к алгебраическим уравнениям общего вида 

    Рп(х)=0, где Рп(х) - многочлен степени n. Основным способом решения алгебраических уравнений является разложение его левой части на множители. Подробно рассматривается алгоритм деления многочленов уголком.

    В данной теме целесообразно продемонстрировать на конкретном примере теорему Безу, показать, что ее применение сводит решение уравнения степени п к решению уравнения степени n-1.

    Решение систем нелинейных уравнений проводится как известными учащимся способами, так и делением уравнений и введением вспомогательных неизвестных.

    Разработанный математический аппарат позволяет существенно расширить класс содержательных текстовых задач, решаемых с помощью систем нелинейных уравнений.

    3. Степень с рациональным показателем

    Степень с целым показателем и ее свойства. Возведение числового неравенства в степень с натуральным показателем.

    Основная цель — сформировать понятие степени с целым показателем; выработать умение выполнять преобразования простейших выражений, содержащих степень с целым показателем; ввести понятия корня n-й степени и степени с рациональным показателем.

    Детальное изучение степени с натуральным показателем в 7 классе создает базу для введения понятия степени с целым показателем. Однако в начале темы необходимо целенаправленное повторение свойств степени с натуральным показателем и выполнение преобразований алгебраических выражений. содержащих степени с натуральными показателями. Такое повторение служит пропедевтикой к изучению степени с целым показателем и ее свойств, чему в данной теме уделяется основное внимание.

    Формируется понятие степени с целым отрицательным и нулевым показателями. Повторяется определение стандартного вида числа. Доказывается свойство возведения в степень с целым отрицательным показателем произведения двух множителей. Учащиеся овладевают умениями находить значение степени с целым показателем при конкретных значениях основания и показателя степени и применять свойства степени для вычисления значений числовых выражений и выполнения простейших преобразований.

    Учащиеся знакомятся с возведением в натуральную степень неравенств, у которых левые и правые части положительны. В дальнейшем эти знания будут применяться при изучении возрастания и убывания функций y=x2, y=x3.

    Специальное внимание уделяется вычислению значений степени, в частности, с использованием калькулятора.

    В данной теме вводятся понятие арифметического корня натуральной степени и понятие степени с рациональным показателем. Необходимость их введения обосновывается на конкретных примерах. Формирование умения применять свойства степени с рациональным показателем не предусматривается. |

    1.  Степенная функция

    Область определения функции. Возрастание и убывание функции. Четность и нечетность функции. Функция .

    Основная цель — выработать умение исследовать по заданному графику функции .

    При изучении материала данной главы углубляются и существенно расширяются функциональные представлении учащихся.

    На примерах функций рассматриваются основные свойства степенной функции, которые после изучения степени с действительным показателем лягут в основу формирования представлений о степенной функции с любым действительным показателем. Здесь же важно не только изучить свойства и графики конкретных функций, но и показать прикладной аспект их применения.

    Учащимся предстоит овладеть такими понятиями, как область определения, четность и нечетность функции, возрастание и убывание функции на промежутке.

    Понятия возрастания и убывания функции учащиеся встречали в курсе алгебры 8 класса, но лишь при изучении данной темы формируются определения этих понятий, а следовательно, появляется возможность аналитически доказать возрастание или убывание конкретной функции на промежутке. (Однако проведение подобных доказательств не входит в число обязательных умений.) Учащиеся должны научиться находить промежутки возрастания функции с помощью графика рассматриваемой функции.

    При изучении темы примеры функций с дробным показателем не рассматриваются, так как понятие степени с рациональным показателем в данном курсе не вводится.

    При изучении каждой конкретной функции (включая и функции у = kx + b, у = ах2 + bх + с) предполагается, что учащиеся смогут изобразить эскиз графика рассматриваемой функции и по графику перечислить ее свойства.

    С помощью функции  уточняется понятие обратной пропорциональности, о котором лишь упоминалось в курсе алгебры 8 класса.

    [При изучении данной темы особое внимание уделяется свойствам функций и отображению этих свойств на графиках. Одновременно формируются начальные умения выполнять простейшие преобразования графиков функций.]

    1. Элементы тригонометрии.

     Радианная мера угла. Поворот точки вокруг начала координат. Определение синуса, косинуса, тангенса угла. Знаки синуса, косинуса и тангенса. Зависимость между синусом, косинусом и тангенсом одного и того же  угла.

    Основная цель – ввести понятия синуса, косинуса,  тангенса и котангенса произвольного угла; сформировать умения вычислять по известному значению одной из тригонометрических функций значения остальных тригонометрических функций, выполнять несложные преобразования тригонометрических выражений.

    В курсе геометрии 8 класса были сформулированы определения синуса, косинуса и тангенса острого угла прямоугольного треугольника. Теперь в курсе алгебры учащиеся знакомятся с соответствующими понятиями для произвольного угла. Рассматривается радианная мера угла, и устанавливается соответствие между действительными числами и точками окружности. Понятие синуса и косинуса вводятся как координаты точки единичной окружности, полученной в результате поворота точки           P (1;0). В данной теме вводится термин «тригонометрическая функция», говорится об облости определения функций , ,  и изображаются графики этих функций. Однако делается это лишь с целью знакомства с новым классом функций, а не с целью детального изучения их свойств и графиков.

    При изучении материала указывается возможность использования понятия котангенса при решении задач, но этому понятию уделяется незначительное внимание.

    Учащиеся изучают зависимость знаков значений синуса, косинуса и тангенса от величины угла, учатся находить значения тригонометрических функций по заданному значению одной из них, используя основное тригонометрическое тождество.

         6.Прогрессии

    Числовая последовательность. Арифметическая и геометрическая прогрессии. Формулы n-го члена и суммы n первых членов арифметической и геометрической прогрессий.

    Основная цель — познакомить учащихся с понятиями арифметической и геометрической прогрессий.

    Учащиеся знакомятся с понятием числовой последовательности, учатся по заданной формуле n-го члена при рекуррентном способе задания последовательности находить члены последовательности.

    Знакомство с арифметической и геометрической прогрессиями как числовыми последовательностями особых видов происходит на конкретных практических примерах.

    Формулы n-го члена и суммы n первых членов обеих прогрессий выводятся учителем, однако требовать от учащихся выводить эти формулы необязательно.

    Упражнения не должны предполагать использование в своем решении формул, не приведенных в учебнике. Основное внимание уделяется решению практических и прикладных задач.

          7.Случайные события

    События невозможные, достоверные, случайные. Совместные и несовместные события. Равновозможные события. Классическое определение вероятности события. Представление о геометрической вероятности. Решение вероятностных задач с помощью комбинаторики. Противоположные события и их вероятности. Относительная частота и закон больших чисел. Тактика игр, справедливые и несправедливые игры.

    Основная цель — познакомить учащихся с различными видами событий, с понятием вероятности события и с различными подходами к определению этого понятия; сформировать умения нахождения вероятности события, когда число равновозможных исходов испытания очевидно; обучить нахождению вероятности события после проведения серии однотипных испытаний.

    Классическое определение вероятности события вводится и применяется в ходе моделирования опытов (испытаний) с равновозможными исходами: бросание монет, игральных кубиков, Изъятие карт из колоды, костей домино из набора и т. п. Статистическое определение вероятности вводится после рассмотрения опытов, в которых равновозможность исходов не очевидна.

    Приводится теорема о сумме вероятностей противоположных событий. Рассматриваются задачи на нахождение вероятности искомого события через нахождение вероятности противоположного события.

    Прикладной аспект вероятностных знаний иллюстрируется, в частности, при выявлении справедливых и несправедливых игр, при планировании участия н лотереях и т. п.

          8.Случайные величины

    Таблицы распределения значений случайной величины. Наглядное представление распределения случайной величины: полигон частот, диаграммы круговые, линейные, столбчатые, гистограмма. Генеральная совокупность и выборка. Репрезентативная выборка. Характеристики выборки: размах, мода, медиана, среднее. Представление о законе нормального распределения.

    Основная цель — сформировать представления о закономерностях в массовых случайных явлениях; выработать умение сбора и наглядного представления статистических данных; обучить нахождению центральных тенденций выборки.

    После знакомства с различными вилами случайных величин приводятся примеры составления таблиц распределения этих величин по вероятностям, частотам, относительным частотам. На основании таблиц распределения строятся полигоны частот и диаграммы.

    Формируется представление о генеральной совокупности, о произвольной и репрезентативной выборках. На учебных выборках, имеющих небольшой размах, формируется умение находить моду, медиану и среднее значение; умение определять — какую выборку имеет смысл характеризовать одной из центральных тенденции. [Рассматриваются дискретные и непрерывные случайные величины, демонстрируется наглядная интерпретация распределения значений непрерывной случайной величины о помощью гистограммы. Приводятся характеристики выборки — отклонение от среднего, дисперсия, среднее квадратичное отклонение. Формулируется правило трех сигм.   

    1. Повторение. Решение задач по курсу алгебры 7—9 классов

                                                      Тематическое планирование

    Алгебра 7 класс

    № урока

    дата

                                         Тема урока

    Кол-во часов

    1

    2

    3,4

    5

    6,7

    8

    9

       10

    11

    12,13

    14-16

    15

    16

    17

    18,19

    20

    21,22

    23

    24

    25

    26

    27,28

    29,30

    31

    32

    33

    34-36

    37,38

    39-41

    42-45

    46-48

    49

    50

    51-53

    54,55

    56-60

    61-63

    64-68

    69

    70

    71

    72,73

    74,75

    76-78

    79

    80

    81

    82

    83,84

    85,86

    87

    88-90

    91

    92

    93

    94

    95

    96

    97

    98-99

    100-102

    Глава  I   Алгебраические выражения

    Числовые выражения

     Алгебраические выражения

     Алгебраические равенства. Формулы

     Свойства арифметических действий

     Правила раскрытия скобок

     Обобщающий урок

     Контрольная работа №1  «Алгебраические выражения»

    Резерв

           

                   Глава II   Уравнения с одним неизвестным

    Уравнение и его корни

     Решение уравнений с одним неизвестным, сводящихся к линейным

     Решение задач с помощью уравнений

     Обобщающий урок

     Контрольная работа №2  «Уравнения с одним неизвестным»

                  Глава III    Одночлены и многочлены

    Степень с натуральным показателем

     Свойства степени с натуральным показателем

     Одночлен. Стандартный вид одночлена

     Умножение одночленов

     Многочлены

     Приведение подобных членов

     Сложение и вычитание многочленов

     Умножение многочлена на одночлен

     Умножение многочлена на многочлен

     Деление одночлена и многочлена на одночлен

     Обобщающий урок

     Контрольная работа №3  «Одночлены и многочлены»

    резерв

                Глава IV   Разложение многочленов на множители

    Вынесение общего множителя за скобки

     Способ группировки

     Формула разности квадратов

     Квадрат суммы. Квадрат разности

     Применение нескольких способов разложения многочлена на множители

     Контрольная работа  №4 «Разложение многочленов на множители»

    резерв

                 Глава V   Алгебраические дроби

    Алгебраическая дробь. Сокращение дробей

    Приведение дробей к общему знаменателю

     Сложение и вычитание алгебраических дробей

     Умножение и деление алгебраических дробей

     Совместные действия над алгебраическими дробями

     Контрольная работа №5  «Алгебраические дроби»

    резерв

           Глава  VI    Линейная функция и ее график

    Прямоугольная система координат на плоскости

     Функция

     Функция у = кх и ее график

     Линейная функция и ее график

     Обобщающий урок

     Контрольная работа №6  «Линейная функция и её график»

    Резерв

    Глава VII  Системы двух уравнений с двумя неизвестными

    Системы уравнений

     Способ подстановки

     Способ сложения

     Графический способ решения систем уравнений

     Решение задач с помощью систем уравнений

     Обобщающий урок

     Контрольная работа  №7 «Системы двух уравнений с двумя неизвестными»

    резерв

                 Введение в комбинаторику

    Исторические комбинаторные задачи

     Различные комбинации из трех элементов

     Таблица вариантов и правило произведения

     Подсчет вариантов с помощью графов

     Решение задач. Самостоятельная работа

    резерв

                                  Повторение.

    Итого 102 часа

    10

    1

    1

    2

    1

    2

    1

    1

    1

    8

    1

    2

    3

    1

    1

    17

    1

    2

    1

    2

    1

    1

    1

    1

    2

    2

    1

    1

    1

    17

    3

    2

    3

    4

    3

    1

    1

    20

    3

    2

    5

    3

    5

    1

    1

    10

    1

    2

    2

    3

    1

    1

    1

    11

    1

    2

    2

    1

    3

    1

    1*-

    1

    -

    7

    1

    1

    1

    1

    1

    2

    3

                                                      Тематическое планирование

    Алгебра 8 класс

    урока

    дата

                                         Тема урока

    Кол-во часов

    1,2

    3

    4,5

    6

    7

    8

    9-11

    12

    13-15

    16-17

    18

    19

    20,21

    22,23

    24-26

    27,28

    29,30

    31

    32

    33

    34,35

    36

    37

    38-41

    42,43

    44-46

    47-50

    51-53

    54

    55

    56

    57

    58

    59-61

    62-64

    65-69

    70

    71

    72

    73,74

    75-78

    79,80

    81

    82

    83

    84

    85,86

    87,88

    89

    90,91

    92

    93,94

    95

    96

    97

    98

    99-102

                  Глава  I   Неравенства

    Положительные и отрицательные числа

    Числовые неравенства.

    Основные свойства числовых неравенств

    Сложение и умножение неравенств

    Строгие и нестрогие неравенства

    Неравенства с одним неизвестным

    Решение неравенств

    Системы неравенств с одним неизвестным. Числовые промежутки          Решение систем неравенств

    Модуль числа. Уравнения и неравенства, содержащие модуль

     Обобщающий урок          

    Контрольная работа № 1«Неравенства»

                  Глава II     Квадратные корни

    Арифметический квадратный корень

    Действительные числа

    Квадратный корень из степени

    Квадратный корень из произведения

    Квадратный корень из дроби

    Обобщающий урок

    Контрольная работа№2 «Квадратные корни»

    резерв

                  Глава III    Квадратные уравнения

    Квадратные уравнения и его корни

    Неполные квадратные уравнения

    Метод выделения полного квадрата

    Решение квадратных уравнений

    Приведённое квадратное уравнение. Теорема Виета. Проверочная работа

    Уравнения, сводящиеся к квадратным

    Решение задач с помощью квадратных уравнений

    Решение простейших систем, содержащих уравнение второй степени

    Обобщающий урок

    Контрольная работа№2 «Квадратные уравнения»

    резерв

             

                    Глава  VI    Квадратичная функция

    Определение квадратичной функции

    Функция

    Функция

    Функция

    Построение графика квадратичной функции

    Обобщающий урок

    Контрольная работа №3 « Квадратичная функция»

    резерв

                    Глава V   Квадратные неравенства

    Квадратное неравенство и его решения

    Решение квадратного неравенства с помощью графика квадратичной функции

    Метод интервалов

    Исследование квадратичного трёхчлена

    Обобщающий урок

    Контрольная работа №4 «Квадратные неравенства»

    Резерв

                   Глава  VI      Приближённые вычисления

    Приближённые значения величин. Погрешность приближения

    Оценка погрешности

    Округление чисел

    Относительная погрешность

    Простейшие вычисления на микрокалькуляторе

    Стандартный вид числа. Проверочная работа

    Вычисление на микрокалькуляторе степени числа, обратного данному

    Последовательность выполнения действий на микрокалькуляторе

    Вычисление на микрокалькуляторе с использованием ячейки памяти

    резерв

                               

                                Повторение

    Итого 102 часа

    19

    2

    1

    2

    1

    1

    1

    3

    1

    3

    2

    1

    1

    14

    2

    2

    3

    2

    2

    1

    1

    1

    23

    2

    1

    1

    4

    2

    3

    4

    3

    1

    1

    1

    16

    1

    1

    3

    3

    5

    1

    1

    1

    12

    2

    4

    2

    1

    1

    1

    1

    14

    2

    2

    1

    2

    1

    2

    1

    1

    1

    1

    4

                                              Тематическое планирование

                                                            Алгебра 9 класс

    урока

    дата

                                         Тема урока

            

    Кол-во часов

    1,2

    3

    4,5

    6-8

    9-11

    12,13

    14,15

    16

    17

    18

    19-21

    22,23

    24

    25

    26-28

    29,30

    31,32

    33-35

    36-40

    41,42

    43

    44

    45,46

    47-49

    50-52

    53-55

    56

    57

    58

    59,60

    61,62

    63,64

    65

    66-68

    69

    70

    71-73

    74,75

    76,77

    78-80

    81

    82

    83

    84

    85,86

    87

    88,89

    90

    91-102

                 Повторение курса алгебры 8 класса

     

               Глава  I   Алгебраические уравнения. Системы нелинейных уравнений

    Деление многочленов

    Решение алгебраических уравнений

    Уравнения, сводящиеся к алгебраическим

    Системы нелинейных уравнений с двумя неизвестными

    Различные способы решения систем уравнений

    Решение задач с помощью систем уравнений

    Обобщающий урок

    Контрольная работа № 1 «Алгебраические уравнения. Системы нелинейных уравнений»

                  Глава II     Степень с рациональным показателем

    Повторение свойств степени с натуральным показателем

    Степень с целым показателем

    Арифметический корень натуральной степени. Свойства арифметического корня

    Степень с рациональным показателем. Возведение в степень числового неравенства

    Контрольная работа № 2 «Степень с рациональным показателем»

                  Глава III    Степенная функция

    Область определения функции

    Возрастание и убывание функции

    Чётность и нечётность функции

    Функция у=к/х

    Неравенства и уравнения, содержащие степень

    Обобщающий урок

    Контрольная работа№3 «Степенная функция»

                    Глава  VI   Прогрессии

    Числовая последовательность

    Арифметическая прогрессия

    Сумма n первых членов арифметической прогрессии

    Геометрическая прогрессия

    Сумма n первых членов геометрической прогрессии

    Обобщающий урок

    Контрольная работа №4 «Прогрессии»

                         Глава  V   Случайные события

    События

    Вероятность события

    Повторение элементов комбинаторики. Решение задач

    Решение вероятностных задач с помощью комбинаторики

    Противоположные события и их вероятности

    Относительная частота и закон больших чисел

    Обобщающий урок

    Контрольная работа №5 «Случайные события»

                         Глава  VI      Случайные величины

    Таблицы распределения

    Полигоны частот

    Генеральная совокупность и выборка

    Размах и центральные тенденции

    Обобщающий урок

    Контрольная работа №6 «Случайные величины»

                          Элементы тригонометрии

    Радианная мера угла

    Поворот точки вокруг начала координат

    Определение синуса, косинуса и тангенса угла

    Знаки синуса и тангенса угла

    Зависимость синуса, косинуса и тангенса одного и того же угла. Тригонометрические тождества. Самостоятельная работа

                            Повторение

    Итого    102 часа    

    2

    15

    1

    2

    3

    3

    2

    2

    1

    1

    8

    1

    3

    2

    1

    1

    18

    3

    2

    2

    3

    5

    2

    1

    14

    1

    2

    3

    3

    3

    1

    1

    13

    1

    2

    2

    2

    1

    3

    1

    1

    12

    3

    2

    2

    3

    1

    1

    8

    1

    1

    2

    1

    2

    1

    12


    По теме: методические разработки, презентации и конспекты

    Рабочие программы по физике 7, 8, 9 классы (Пёрышкин, Гутник, 68 ч)

    Учебных недель - 34Количество часов в неделю - 2...

    Рабочая программа по алгебре 7, 8, 9 классы (профильный уровень)

    Рабочая программа по  алгебре 7, 8, 9 классы (профильный уровень) к учебнику авторов Ю.Н.Макарычев, Н.Г.Миндюк, К.И.Нешков, И.Е.Феоктистов....

    рабочая программа по геометрии 7,8,9 классы

    Рабочая программа по геометрии для 7,8,9 классов к учебнику  Атанасяна (2 часа в неделю)...

    Адаптированная рабочая программа по истории. 7, 8, 9 класс

    Адаптированная рабочая программа по истории для учащихся с ОВЗ. 7, 8, 9 класс....

    Рабочая программа по математике 7, 8, 9 класс для школы VIII вида

    Рабочая программа представляет собой пояснительную записку, особенности обучения, тематическое планирование в 7, 8, 9 классах щколы VIII вида....