Дидактические материалы для занятий математического кружка "Математика +" 7 класс. Занятие 7. Логические задачи
олимпиадные задания по математике (7 класс) по теме

Сантьева Лариса Валерьевна

Математический кружок- одна из наиболее эффективных форм внеклассных занятий. Для меня, как учителя, важно иметь под рукой пособие, в котором представлены идеи решений и которое позволило бы провести цикл занятий математического кружка не прилагая титанических усилий для подбора материала. Мной предпринята попытка составления такой разработки, которую можно было использовать при подготовке к занятиям.

Скачать:

ВложениеРазмер
Файл zanyatie_7_logicheskie_zadachi.docx137.53 КБ

Предварительный просмотр:

Логические задачи

 

Решать логические задачи очень увлекательно. В них вроде бы нет никакой математики - нет ни чисел, ни функций, ни треугольников, ни векторов, а есть только лжецы и мудрецы, истина и ложь. В то же время дух математики в них чувствуется ярче всего - половина решения любой математической задачи (а иногда и гораздо больше половины) состоит в том, чтобы как следует разобраться в условии, распутать все связи между участвующими объектами.

Итак, мы узнаем, как разными способами можно решать логические задачи. Оказывается таких приемов несколько, они разнообразны и каждый из них имеет свою область применения. В этой главе вы узнаете кое-что об этих приемах. Познакомившись подробно, поймете в каких случаях удобнее использовать тот или другой метод.

Логические или нечисловые задачи составляют обширный класс нестандартных задач. Сюда относятся, прежде всего, текстовые задачи, в которых требуется распознать объекты или расположить их в определенном порядке по имеющимся свойствам. При этом часть утверждений условия задачи может выступать с различной истинностной оценкой (быть истинной или ложной). К классу логических задач относятся также задачи на переливания и взвешивания (фальшивые монеты и т.п.).

Основные приемы и методы решения логических задач

Теория, мой друг, суха, но зеленеет жизни древо.

И.В.Гете

Известно несколько различных способов решения логических задач. Давайте назовем их так:

  • Метод рассуждений;
  • Метод таблиц;
  • Метод графов;
  • Метод блок-схем;
  • Метод бильярда;
  • Метод кругов Эйлера.

Остановимся отдельно на каждом из выделенных методов, иллюстрируя их примерами решения конкретных задач.

Метод первый: Метод рассуждений

На всякого мудреца довольно простоты.

Пословица

Способ рассуждений - самый примитивный способ. Этим способом решаются самые простые логические задачи. Его идея состоит в том, что мы проводим рассуждения, используя последовательно все условия задачи, и приходим к выводу, который и будет являться ответом задачи.

Идея метода: последовательные рассуждения и выводы из утверждений, содержащихся в условии задачи.

Познакомиться с этим методом можно на следующем примере.

Этим способом обычно решают несложные логические задачи.

Задача 1. Вадим, Сергей и Михаил изучают различные иностранные языки: китайский, японский и арабский. На вопрос, какой язык изучает каждый из них, один ответил: "Вадим изучает китайский, Сергей не изучает китайский, а Михаил не изучает арабский". Впоследствии выяснилось, что в этом ответе только одно утверждение верно, а два других ложны. Какой язык изучает каждый из молодых людей?

Решение. Имеется три утверждения. Если верно первое утверждение, то верно и второе, так как юноши изучают разные языки. Это противоречит условию задачи, поэтому первое утверждение ложно. Если верно второе утверждение, то первое и третье должны быть ложны. При этом получается, что никто не изучает китайский. Это противоречит условию, поэтому второе утверждение тоже ложно. Остается считать верным третье утверждение, а первое и второе — ложными. Следовательно, Вадим не изучает китайский, китайский изучает Сергей.

Ответ: Сергей изучает китайский язык, Михаил — японский, Вадим — арабский.

Метод второй: Метод таблиц

Сначала приговор, потом доказательство.

Л.Керролл

Основной прием, который используется при решении текстовых логических задач, заключается в построении таблиц. Таблицы не только позволяют наглядно представить условие задачи или ее ответ, но в значительной степени помогают делать правильные логические выводы в ходе решения задачи. Приглашаем познакомиться с примером решения конкретной задачи методом таблиц.

Идея метода: оформлять результаты логических рассуждений в виде таблицы.

Преимущества метода:

  • Наглядность.
  • Возможность контролировать процесс рассуждений.
  • Возможность формализовать некоторые логические рассуждения.

Задача 2. 

Три клоуна Бим, Бам и Бом вышли на арену в красной, зеленой и синей рубашках. Их туфли были тех же цветов. У Бима цвета рубашки и туфель совпадали. У Бома ни туфли, ни рубашка не были красными. Бам был в зеленых туфлях, а в рубашке другого цвета. Как были одеты клоуны?

Решение.

Составим таблицу, в столбцах которой отметим возможные цвета рубашек и туфель клоунов (буквами К, З и С обозначены красный, зеленый и синий цвета). Будем заполнять таблицу, используя условия задачи. Туфли Бама зеленые, а рубашка не является зеленой. Ставим знак + в клетку 2-й строки и 5-го столбца, и знак - в клетку 2-й строки и 2-го столбца. Следовательно, у Бима и Бома туфли уже не могут быть зелеными, так же как не могут быть туфли Бама синими или красными. Отметим все это в таблице (см. табл. 1).

 

Далее, туфли и рубашка Бома не являются красными, отметим соответствующие ячейки таблицы знаком – . Из таблицы, заполненной на этом этапе, видим, что красные туфли могут быть только у Бима, а, следовательно, туфли Бома - синие. Правая часть таблицы заполнена, мы установили цвета обуви клоунов (табл.1). Цвет рубашки Бима совпадает с цветом его туфель и является красным. Теперь легко устанавливается владелец зеленой рубашки - Бом. Бам, в таком случае, одет в рубашку синего цвета.

Мы полностью заполнили таблицу, в которой однозначно устанавливаются цвета туфель и рубашек клоунов (см. табл. 2): Бим одет в красную рубашку и красные туфли, Бам в синей рубашке и зеленых туфлях, Бом в зеленой рубашке и туфлях синего цвета.

Ответ: 

Бим одет в красную рубашку и красные туфли,

Бам в синей рубашке и зеленых туфлях,

Бом в зеленой рубашке и туфлях синего цвета.

Метод третий: Метод блок-схем

Как без математических наук проводит свои линии паук.

А.Поуп

В этом разделе рассматривается еще один тип логических задач. Это задачи, в которых с помощью сосудов известных емкостей требуется отмерить некоторое количество жидкости, а также задачи, связанные с операцией взвешивания на чашечных весах. Простейший прием решения задач этого класса состоит в переборе возможных вариантов. Понятно, что такой метод решения не совсем удачный, в нем трудно выделить какой-либо общий подход к решению других подобных задач.

Более систематический подход к решению задач "на переливание" заключается в использовании блок-схем. Суть этого метода состоит в следующем. Сначала выделяются операции, которые позволяют нам точно отмерять жидкость. Эти операции называются командами. Затем устанавливается последовательность выполнения выделенных команд. Эта последовательность оформляется в виде схемы. Подобные схемы называются блок-схемами и широко используются в программировании. Составленная блок-схема является программой, выполнение которой может привести нас к решению поставленной задачи. Для этого достаточно отмечать, какие количества жидкости удается получить при работе составленной программы. При этом обычно заполняют отдельную таблицу, в которую заносят количество жидкости в каждом из имеющихся сосудов.

Идея метода: описать последовательность выполнения операций, определить порядок их выполнения и фиксировать состояния.

Здесь приводится два примера решений задачи на переливание и на взвешивание. Примеры решения задач.

Задача 3. 

Имеются два сосуда — трехлитровый и пятилитровый. Нужно, пользуясь этими сосудами, получить 1, 2, 3, 4, 5, 6, 7 и 8 литров воды. В нашем распоряжении водопроводный кран и раковина, куда можно выливать воду.

Решение.

 Перечислим все возможные операции, которые могут быть использованы нами, и введем для них следующие сокращенные обозначения: НБ — наполнить больший сосуд водой из-под крана; НМ — наполнить меньший сосуд водой из-под крана; ОБ — опорожнить больший сосуд, вылив воду в раковину; ОМ — опорожнить меньший сосуд, вылив воду в раковину; Б→М — перелить из большего в меньший, пока больший сосуд не опустеет или меньший сосуд не наполнится; М→Б — перелить из меньшего в больший, пока меньший сосуд не опустеет или больший сосуд не наполнится. Выделим среди перечисленных команд только три: НБ, Б→М, ОМ. Кроме этих трех команд рассмотрим еще две вспомогательные команды: Б = 0 ? — посмотреть, пуст ли больший сосуд; М = З ? — посмотреть, наполнен ли малый сосуд.

В зависимости от результатов этого осмотра мы переходим к выполнению следующей команды по одному из двух ключей - "да" или "нет". Такие команды в программировании принято называть командами "условного перехода" и изображать в блок-схемах в виде ромбика с двумя ключами-выходами.

Договоримся теперь о последовательности выполнения выделенных команд. После Б→М будем выполнять ОМ всякий раз, как меньший сосуд оказывается наполненным, и НБ всякий раз, как больший сосуд будет опорожнен. Последовательность команд изобразим в виде блок-схемы (Рис. 1). Начнем выполнение программы. Будем фиксировать, как меняется количество воды в сосудах, если действовать по приведенной схеме. Результаты оформим в виде таблицы (табл.).

Б

0

5

2

2

0

5

4

4

1

1

0

5

3

3

0

0

М

0

0

3

0

2

2

3

0

3

0

1

1

3

0

3

0

Дальше эта последовательность будет полностью повторяться. Из таблицы видим, что количество воды в обоих сосудах вместе образует следующую последовательность: 0, 5, 2, 7, 4, 1, 6, 3, 0 и т.д. Таким образом, действуя по приведенной схеме, можно отмерить любое количество литров от 1 до 7. Чтобы отмерить еще и 8 литров, надо наполнить оба сосуда.

Задача 4.

Среди четырех монет одна фальшивая. Она отличается массой, однако неизвестно, легче она или тяжелее. Масса настоящей монеты 5 г. Как при помощи двух взвешиваний на чашечных весах обнаружить фальшивую монету, если имеется одна гиря массой 5 г? Можно ли при этих условиях опознать, легче фальшивая монета или тяжелее?

Решение.

 Пусть m1, m2, m3, m4 – массы четырех монет соответственно, Г - масса гири. Оформим решение в виде блок-схемы (см.рис.). Приведенная схема задает программу, осуществление которой позволяет установить фальшивую монету и определить, легче она или тяжелее. Взвешиваниям в блок-схеме соответствуют прямоугольники - операторы условного перехода. В схеме выделены первое и второе взвешивания горизонтальными линиями.

         

Прокомментируем для примера ход рассуждений, двигаясь лишь по одной ветви блок-схемы. Итак, первое взвешивание: пусть m1 + m2 < m3 + + Г. Это означает, что фальшивая монета находится среди первых трех монет, и, следовательно, четвертая монета истинная, то есть m4 = 5.

Второе взвешивание: пусть m1+m3 > m4+Г. Тогда фальшивая монета тяжелее (так как m4+Г - вес двух истинных монет) и это либо первая, либо третья монета. Но показания весов при первом взвешивании (m1+m2 < m3+Г) позволяют нам сделать вывод, что более тяжелой является третья монета. Если бы показания весов при втором взвешивании были противоположными, то фальшивая монета должна бы быть более легкой, а, стало быть, это была первая монета. Наконец, если при втором взвешивании весы будут в равновесии, то и третья и первая монеты не могут быть фальшивыми. Следовательно, фальшивой является вторая монета и вес ее меньше 5 грамм.

Метод четвертый: Метод математического бильярда

Прежде чем решать задачу, подумай,

 что делать с ее решением!

Д.Пойа

Надеемся, что Вам известна игра бильярд за прямоугольным столом с лузами. Появившись до нашей эры в Индии и Китае, бильярд через много веков перекочевал в европейские страны – упоминание о нем имеется в английских летописях VI века. В России бильярд стал известен и распространился при Петре I. Подобно тому, как азартная игра в кости вызвала к жизни "исчисление" вероятностей, игра в бильярд послужила предметом серьезных научных исследований по механике и математике. Представьте себе горизонтальный бильярдный стол произвольной формы, но без луз. По этому столу без трения движется точечный шар, абсолютно упруго отражаясь от бортов стола. Спрашивается, какой может быть траектория этого шарика? Поиски ответа на этот вопрос и послужили появлению теории математического бильярда или теории траекторий.

Идея метода: нарисовать бильярдный стол и интерпретировать действия движениями бильярдного шара, фиксируя состояния в отдельной таблице.

Преимущества метода:

  • Наглядность.
  • Привлекательность идеи бильярда.
  • Возможность обобщить метод на широкий класс задач.

В этом разделе мы приведем одно изящное применение математического бильярда к решению задач на переливание. Загляните обязательно в приготовленный нами пример решения задач с помощью игры в бильярд. Примеры решения задач.

Задачи на переливание жидкостей можно очень легко решать, вычерчивая бильярдную траекторию шара, отражающегося от бортов стола, имеющего форму параллелограмма. Рассмотрим туже задачу, что и в предыдущем разделе (Метод блок-схем).

Задача 5. 

Имеются два сосуда — трехлитровый и пятилитровый. Нужно, пользуясь этими сосудами, получить 1, 2, 3, 4, 5, 6, 7 и 8 литров воды. В нашем распоряжении водопроводный кран и раковина, куда можно выливать воду.

Решение. 

В рассматриваемой задаче стороны параллелограмма должны иметь длины 3 и 5 единиц. По горизонтали будем откладывать количество воды в литрах в 5-литровом сосуде, а по вертикали – в 3-литровом сосуде. На всем параллелограмме нанесена сетка из одинаковых равносторонних треугольников (см. рис.1).

        

Бильярдный шар может перемещаться только вдоль прямых, образующих сетку на параллелограмме. После удара о стороны параллелограмма шар отражается и продолжает движение вдоль выходящего из точки борта, где произошло соударение. При этом каждая точка параллелограмма, в которой происходит соударение, полностью характеризует, сколько воды находится в каждом из сосудов.

Пусть шар находится в левом нижнем углу и после удара начнет перемещаться вверх вдоль левой боковой стороны параллелограмма до тех пор, пока не достигнет верхней стороны в точке А.  Это означает, что мы полностью наполнили водой малый сосуд. Отразившись упруго, шар покатится вправо вниз и ударится о нижний борт в точке В, координаты которой 3 по горизонтали и 0 по вертикали. Это означает, что в большом сосуде 3 литра воды, а в малом сосуде воды нет, то есть мы перелили воду из малого сосуда в большой сосуд.
        

Прослеживая дальнейший путь шара,  и записывая все этапы его движения в виде отдельной таблицы (табл.1), в конце концов, мы попадаем в точку Н, которая соответствует состоянию, когда малый сосуд пуст, а в большом сосуде 4 литра воды. Таким образом, получен ответ и указана последовательность переливаний, позволяющих отмерить 4 литра воды. Все 8 переливаний изображены схематически в таблице.

О

А

В

Н

М

0

3

0

3

1

1

0

3

0

Б

0

0

3

3

5

0

1

1

4

Является ли это решение самым коротким? Нет, существует второй путь, когда воду сначала наливают в пятилитровый сосуд. Если на диаграмме шар из точки О покатится вправо по нижней стороне параллелограмма и затем, отразившись от правой боковой стороны, в точку 2 на верхней стороне параллелограмма и т.д., то получим более короткое решение задачи. Можно показать, что полученное решение с 6 переливаниями уже является самым коротким.

Метод пятый: Круги Эйлера

Круги Эйлера – это один из методов решения логических задач, который дает наглядное представление о возможном способе изображения условий, зависимости, изображений. Чаще всего этот метод используется в тех задачах, в которых требуется найти некоторое пересечение множеств или их объединение.

В математике рисунки в виде кругов, изображающих множества, используются очень давно. Одним из первых, кто пользовался этим методом был выдающийся немецкий математик и философ Готфрид Вильгельм Лейбниц (1646-1716г.). В его черновиках были обнаружены рисунки с такими кругами. Этот метод развил швейцарский математик Леонард Эйлер (1707-1783г.). Он долгие годы работал в Петербургской Академии наук. Наибольшего расцвета графические методы достигли в сочинениях английского логика Джона Венна (1843-1923г.). В честь Венна вместо кругов Эйлера соответствующие рисунки называли иногда диаграммами Венна.

Суммой или объединением двух множеств называется множество всех тех предметов, каждый из которых есть элемент хотя бы одного из данных множеств.

http://aleks-6zklass.narod.ru/images/p80_mat7_5_1.jpghttp://aleks-6zklass.narod.ru/images/mat7_5_2.jpg

Пересечением двух множеств называется множество всех элементов, общих всем данным множествам.

http://aleks-6zklass.narod.ru/images/mat7_5_4.jpghttp://aleks-6zklass.narod.ru/images/p80_mat7_5_3.jpg

Задача 6.

 Известно, что число лежит между 1 и 8. И тоже самое число лежит между 5 и 10. Что это за число?

Решение: Первое множество чисел, лежащих между 1 и 8 состоит из элементов {2;3;4;5;6;7}. Второе множество чисел, лежащих между 5 и 10, состоит из элементов {6;7;8;9}. Пересечением этих множеств являются числа 6 и 7.

Ответ: 6 и 7.

Задача 7. "Обитаемый остров" и "Стиляги"

Некоторые ребята из нашего класса любят ходить в кино. Известно, что 15 ребят смотрели фильм «Обитаемый остров», 11 человек – фильм «Стиляги», из них 6 смотрели и «Обитаемый остров», и «Стиляги». Сколько человек смотрели только фильм «Стиляги»?

Решение  http://logika.vobrazovanie.ru/image/14.PNG

Чертим два множества таким образом: 6 человек, которые смотрели фильмы «Обитаемый остров» и «Стиляги», помещаем в пересечение множеств.

15 – 6 = 9 – человек, которые смотрели только «Обитаемый остров».
11 – 6 = 5 – человек, которые смотрели только «Стиляги». Получаем:
http://logika.vobrazovanie.ru/image/15.PNG

Ответ. 5 человек смотрели только «Стиляги».

Решение логических задач можно сравнить с решением научной проблемы. Вначале исследователь располагает многими данными, на первый взгляд никак не связанными между собою. В ходе анализа этих данных выдвигаются и сопоставляются с фактами новые и новые гипотезы. И вот, наконец, одна из гипотез совпадает с результатами экспериментов и наблюдений. Разрозненные данные сливаются в целостную картину. Становится ясно, что найденное объяснение фактов является единственно возможным. Задача решена. Похожим методом ищут ответы на логические задачи. Единого правила их решения нет.


По теме: методические разработки, презентации и конспекты

Дидактические материалы п математике 5-6 классы

Тесты по математике дат ученикам закрепить знания...

Сборник дидактических материалов к учебнику " Обществознание.10 класс" Е.Н.Салыгин, Ю.Г.Салыгина по теме "Экономика"

Предлагаемый сборник дидактических материалов к учебнику " Обществознание.10 класс" Е.Н.Салыгин, Ю.Г.Салыгина, по теме: " Экономика". Он предназначен  для формирования и закрепления экономических...

Разработка дидактических материалов по теме «Глагол» (5 класс)

Работа содержит дидактические материалы по теме "Глагол" для 5 класса....

План-конспект коррекционного занятия по матеметике в 6 классе по теме "Логические задачи"

Методический материал для проведения коррекционного занятия...

План-конспект коррекционного занятия по матеметике в 6 классе по теме "Логические задачи"

Методические материалы к коррекционным занятиям по математике...

контрольная работа 5-7 класс "Табличное решение логических задач"

Данный материал будет полезен для проведения контроля или подведение итогов изучения темы "Табличное решение логических задач" для 5-7 классов. Здесь помещены ответы для облегчения проверки или самопр...

Конспект урока в 10 классе "Методы решения логических задач"

Конспект урока в 10 классе "Методы решения логических задач". Профильный уровень. По программе Семакина...