Физиология дополнение к конспекту
план-конспект занятия на тему

Иванова Екатерина Александровна

 

Физиология (от греч. phýsis – природа и ...логия) животных и человека, наука о жизнедеятельности организмов, их отдельных систем, органов и тканей и регуляции физиологических функций. Ф. изучает также закономерности взаимодействия живых организмов с окружающей средой, их поведение в различных условиях.

 

Скачать:

ВложениеРазмер
Microsoft Office document icon fiziologiya.doc161 КБ

Предварительный просмотр:

Физиология (от греч. phýsis – природа и ...логия) животных и человека, наука о жизнедеятельности организмов, их отдельных систем, органов и тканей и регуляции физиологических функций. Ф. изучает также закономерности взаимодействия живых организмов с окружающей средой, их поведение в различных условиях.

Классификация. Ф. – важнейший раздел биологии; объединяет ряд отдельных, в значительной мере самостоятельных, но тесно связанных между собой дисциплин. Различают общую, частную и прикладную Ф. Общая Ф. изучает основные физиологические закономерности, общие для различных видов организмов; реакции живых существ на разные раздражители; процессы возбуждения, торможения и т.п. Электрические явления в живом организме (биоэлектрические потенциалы) исследует электрофизиология. Физиологические процессы в их филогенетическом развитии у разных видов беспозвоночных и позвоночных животных рассматривает сравнительная физиология. Этот раздел Ф. служит основой эволюционной физиологии, которая изучает происхождение и эволюцию жизненных процессов в связи с общей эволюцией органического мира. С проблемами эволюционной Ф. неразрывно связаны и вопросы возрастной физиологии, исследующей закономерности становления и развития физиологических функций организма в процессе онтогенеза – от оплодотворения яйцеклетки до конца жизни. Изучение эволюции функций тесно соприкасается с проблемами экологической физиологии, исследующей особенности функционирования разных физиологических систем в зависимости от условий обитания, т. е. физиологической основы приспособлений (адаптаций) к разнообразным факторам внешней среды. Частная Ф. исследует процессы жизнедеятельности у отдельных групп или видов животных, например у с.-х. животных, птиц, насекомых, а также свойства отдельных специализированных тканей (например, нервной, мышечной) и органов (например, почек, сердца), закономерности их объединения в специальные функциональные системы. Прикладная Ф. изучает общие и частные закономерности работы живых организмов и особенно человека в соответствии с их специальными задачами, например физиология труда, спорта, питания, авиационная физиология, космическая физиология, подводная и т.д.

Ф. подразделяют условно на нормальную и патологическую. Нормальная Ф. преимущественно исследует закономерности работы здорового организма, его взаимодействие со средой, механизмы устойчивости и адаптации функций к действию разнообразных факторов. Патологическая физиология изучает измененные функции больного организма, процессы компенсации, адаптации отдельных функций при различных заболеваниях, механизмы выздоровления и реабилитации. Ветвь патологической Ф. – клиническая Ф., выясняющая возникновение и течение функциональных отправлений (например, кровообращения, пищеварения, высшей нервной деятельности) при болезнях животных и человека.

Связь физиологии с другими науками. Ф. как раздел биологии тесно связана с морфологическими науками – анатомией, гистологией, цитологией, т.к. морфологические и физиологические явления взаимообусловлены. Ф. широко использует результаты и методы физики, химии, а также кибернетики и математики. Закономерности химических и физических процессов в организме изучаются в тесном контакте с биохимией, биофизикой и бионикой, а эволюционные закономерности – с эмбриологией. Ф. высшей нервной деятельности связана с этиологией, психологией, физиологической психологией и педагогикой. Ф. с.-х. животных имеет непосредственное значение для животноводства, зоотехнии и ветеринарии. Наиболее тесно Ф. традиционно связана с медициной, использующей её достижения для распознавания, профилактики и лечения различных заболеваний. Практическая медицина, в свою очередь, ставит перед Ф. новые задачи исследований. Экспериментальные факты Ф. как базисной естественной науки широко используются философией для обоснования материалистического мировоззрения.

 Исследование функций живого организма базируется как на собственно физиологических методах, так и на методах физики, химии, математики, кибернетики и др. наук. Такой комплексный подход позволяет изучать физиологические процессы на различных уровнях, в том числе на клеточном и молекулярном.

 История

К 1-й половине 18 в. относится начало развития Ф. в России. В открытой в 1725 Петербургской АН была создана кафедра анатомии и Ф. Возглавлявшие её Д. Бернулли, Л. Эйлер, И. Вейтбрехт занимались вопросами биофизики движения крови. Важными для Ф. были исследования М. В. Ломоносова, придававшего большое значение химии в познании физиологических процессов. Ведущую роль в развитии Ф. в России сыграл медицинский факультет Московского университета, открытого в 1755. Преподавание основ Ф. вместе с анатомией и др. медицинскими специальностями было начато С. Г. Зыбелиным. Самостоятельная кафедра Ф. в университете, которую возглавили М. И. Скиадан и И. И. Вечь, была открыта в 1776. Первая диссертация по Ф. выполнена Ф. И. Барсук-Моисеевым и посвящена дыханию (1794). В 1798 была основана Петербургская медико-хирургическая академия (ныне Военно-медицинская академия им. С. М. Кирова), где в дальнейшем Ф. также получила значительное развитие.

В 19 в. Ф. окончательно отделилась от анатомии. Определяющее значение для развития Ф. в это время имели достижения органической химии, открытие закона сохранения и превращения энергии, клеточного строения организма и создание теории эволюционного развития органического мира.

В начале 19 в. считали, что химические соединения в живом организме принципиально отличны от неорганических веществ и не могут быть созданы вне организма. В 1828 нем. химик Ф. Вёлер синтезировал из неорганических веществ органическое соединение – мочевину и тем самым подорвал виталистические представления об особых свойствах химических соединений организма. Вскоре нем. учёный Ю. Либих, а затем и многие другие учёные синтезировали различные органические соединения, встречающиеся в организме, и изучили их структуру. Эти исследования положили начало анализу химических соединений, участвующих в построении организма и обмене веществ. Развернулись исследования обмена веществ и энергии в живых организмах. Были разработаны методы прямой и непрямой калориметрии, позволившие точно замерять количество энергии, заключённой в различных пищевых веществах, а также освобождаемой животными и человеком в покое и при работе (работы В. В. Пашутина, А. А. Лихачева в России, М. Рубнера в Германии, Ф. Бенедикта, У. Этуотера в США и др.); определены нормы питания (К. Фойт и др.). Значительное развитие получила Ф. нервно-мышечной ткани. Этому способствовали разработанные методы электрического раздражения и механической графической регистрации физиологических процессов. Нем. учёный Э. Дюбуа-Реймон предложил санный индукционный аппарат, нем. физиолог К. Людвиг изобрёл (1847) кимограф, поплавковый манометр для регистрации кровяного давления, кровяные часы для регистрации скорости кровотока и пр. Французский учёный Э. Марей первый применил фотографию для изучения движений и изобрёл прибор для регистрации движений грудной клетки, итальянский учёный А. Моссо предложил прибор для изучения кровенаполнения органов (см. Плетизмография), прибор для исследования утомления (эргограф) и весовой стол для изучения перераспределения крови. Были установлены законы действия постоянного тока на возбудимую ткань (нем. учёный Э. Пфлюгер, рус. – Б. Ф. Вериго,), определена скорость проведения возбуждения по нерву (Г. Гельмгольц). Гельмгольц же заложил основы теории зрения и слуха. Применив метод телефонического выслушивания возбуждённого нерва, рус. физиолог Н. Е. Введенский внёс значительный вклад в понимание основных физиологических свойств возбудимых тканей, установил ритмический характер нервных импульсов. Он показал, что живые ткани изменяют свои свойства как под действием раздражителей, так и в процессе самой деятельности. Сформулировав учение об оптимуме и пессимуме раздражения, Введенский впервые отметил реципрокные отношения в центральной нервной системе. Он первый начал рассматривать процесс торможения в генетической связи с процессом возбуждения, открыл фазы перехода от возбуждения к торможению. Исследования электрических явлений в организме, начатые итал. учёными Л. Гальвани и А. Вольта, были продолжены нем. учёными – Дюбуа-Реймоном, Л. Германом, а в России – Введенским. Рус. учёные И. М. Сеченов и В. Я. Данилевский впервые зарегистрировали электрические явления в центральной нервной системе.

Развернулись исследования нервной регуляции физиологических функций с помощью методик перерезок и стимуляции различных нервов. Нем. учёные братья Э. Г. и Э. Вебер открыли тормозящее действие блуждающего нерва на сердце, рус. физиолог И. Ф. Цион – учащающее сердечные сокращения действие симпатического нерва, И. П. Павлов – усиливающее действие этого нерва на сердечные сокращения. А. П. Вальтер в России, а затем К. Бернар во Франции обнаружили симпатические сосудосуживающие нервы. Людвиг и Цион обнаружили центростремительные волокна, идущие от сердца и аорты, рефлекторно изменяющие работу сердца и тонус сосудов. Ф. В. Овсянников открыл сосудодвигательный центр в продолговатом мозге, а Н. А. Миславский подробно изучил открытый ранее дыхательный центр продолговатого мозга.

В 19 в. сложились представления о трофической роли нервной системы, т. е. о её влиянии на процессы обмена веществ и питание органов. Франц. учёный Ф. Мажанди в 1824 описал патологические изменения в тканях после перерезки нервов, Бернар наблюдал изменения углеводного обмена после укола в определённый участок продолговатого мозга ("сахарный укол"), Р. Гейденгайн установил влияние симпатических нервов на состав слюны, Павлов выявил трофическое действие симпатических нервов на сердце. В 19 в. продолжалось становление и углубление рефлекторной теории нервной деятельности. Были подробно изучены спинномозговые рефлексы и проведён анализ рефлекторной дуги. Шотл. учёный Ч. Белл в 1811, а также Мажанди в 1817 и нем. учёный И. Мюллер изучили распределение центробежных и центростремительных волокон в спинномозговых корешках (Белла – Мажанди закон). Белл в 1826 высказал предположение об афферентных влияниях, идущих от мышц при их сокращении в центральную нервную систему. Эти взгляды были затем развиты русскими учёными А. Фолькманом, А. М. Филомафитским. Работы Белла и Мажанди послужили толчком для развития исследований по локализации функций в мозге и составили основу для последующих представлений о деятельности физиологических систем по принципу обратной связи. В 1842 французский физиолог П. Флуранс, исследуя роль различных отделов головного мозга и отдельных нервов в произвольных движениях, сформулировал понятие о пластичности нервных центров и ведущей роли больших полушарий головного мозга в регуляции произвольных движений. Выдающееся значение для развития Ф. имели работы Сеченова, открывшего в 1862 процесс торможения в центральной нервной системе. Он показал, что раздражение мозга в определённых условиях может вызывать особый тормозной процесс, подавляющий возбуждение. Сеченовым было также открыто явление суммации возбуждения в нервных центрах. Работы Сеченова, показавшего, что "... все акты сознательной и бессознательной жизни, по способу происхождения, суть рефлексы" ("Рефлексы головного мозга", см. в кн.: Избранные философские и психологические произв., 1947, с. 176), способствовали утверждению материалистической Ф. Под влиянием исследований Сеченова С. П. Боткин и Павлов ввели в Ф. понятие нервизма, т. е. представление о преимущественном значении нервной системы в регулировании физиологических функций и процессов в живом организме (возникло как противопоставление понятию о гуморальной регуляции). Изучение влияний нервной системы на функции организма стало традицией рус. и сов. Ф.

Во 2-й половине 19 в. с широким применением метода экстирпации (удаления) было начато изучение роли различных отделов головного и спинного мозга в регуляции физиологических функций. Возможность прямого раздражения коры больших полушарий была показана нем. учёными Г. Фричем и Э. Гитцигом в 1870, а успешное удаление полушарий осуществлено Ф. Гольцем в 1891 (Германия). Широкое развитие получила экспериментально-хирургическая методика (работы В. А. Басова, Л. Тири, Л. Велла, Р. Гейденгайна, Павлова и др.) для наблюдения над функциями внутренних органов, особенно органов пищеварения, Павлов установил основные закономерности в работе главных пищеварительных желёз, механизм их нервной регуляции, изменение состава пищеварительных соков в зависимости от характера пищевых и отвергаемых веществ. Исследования Павлова, отмеченные в 1904 Нобелевской премией, позволили понять работу пищеварительного аппарата как функционально целостной системы.

В 20 в. начался новый этап в развитии Ф., характерной чертой которого был переход от узкоаналитического понимания жизненных процессов к синтетическому. Огромное влияние на развитие отечественной и мировой Ф. оказали работы И. П. Павлова и его школы по Ф. высшей нервной деятельности. Открытие Павловым условного рефлекса позволило на объективной основе приступить к изучению психических процессов, лежащих в основе поведения животных и человека. На протяжении 35-летнего исследования высшей нервной деятельности Павловым установлены основные закономерности образования и торможения условных рефлексов, физиология анализаторов, типы нервной системы, выявлены особенности нарушения высшей нервной деятельности при экспериментальных неврозах, разработана корковая теория сна и гипноза, заложены основы учения о двух сигнальных системах. Работы Павлова составили материалистический фундамент для последующего изучения высшей нервной деятельности, они дают естественнонаучное обоснование теории отражения, созданной В. И. Лениным.

Крупный вклад в исследования Ф. центральной нервной системы внёс английский физиолог Ч. Шеррингтон, который установил основные принципы интегративной деятельности мозга: реципрокное торможение, окклюзию, конвергенцию возбуждений на отдельных нейронах и т.д. Работы Шеррингтона обогатили Ф. центральной нервной системы новыми данными о взаимоотношении процессов возбуждения и торможения, о природе мышечного тонуса и его нарушении и оказали плодотворное влияние на развитие дальнейших исследований. Так, голландский учёный Р. Магнус изучил механизмы поддержания позы в пространстве и ее изменения при движениях. Сов. учёный В. М. Бехтерев показал роль подкорковых структур в формировании эмоциональных и двигательных реакций животных и человека, открыл проводящие пути спинного и головного мозга, функции зрительных бугров и т.д. Сов. учёный А. А. Ухтомский сформулировал учение о доминанте как о ведущем принципе работы головного мозга; это учение существенно дополнило представления о жёсткой детерминации рефлекторных актов и их мозговых центров. Ухтомский установил, что возбуждение мозга, вызванное доминирующей потребностью, не только подавляет менее значимые рефлекторные акты, но и приводит к тому, что они усиливают доминирующую деятельность.

Значительными достижениями обогатило Ф. физическое направление исследований. Применение струнного гальванометра голландским учёным В. Эйнтховеном, а затем советским исследователем А. Ф. Самойловым дало возможность зарегистрировать биоэлектрические потенциалы сердца. С помощью электронных усилителей, позволивших в сотни тысяч раз усиливать слабые биопотенциалы, американский учёный Г. Гассер, английский – Э. Эдриан и рус. физиолог Д. С. Воронцов зарегистрировали биопотенциалы нервных стволов (см. Биоэлектрические потенциалы). Регистрация электрических проявлений деятельности головного мозга – электроэнцефалография – впервые осуществлена рус. физиологом В. В. Правдич-Неминским и продолжена и развита нем. исследователем Г. Бергером. Советский физиолог М. Н. Ливанов применил математические методы для анализа биоэлектрических потенциалов коры головного мозга. Английский физиолог А. Хилл зарегистрировал теплообразование в нерве при прохождении волны возбуждения.

В 20 в. начались исследования процесса нервного возбуждения методами физической химии. Ионная теория возбуждения была предложена рус. учёным В. Ю. Чаговцем, затем развита в трудах нем. учёных Ю. Бернштейна, В. Нернста и рус. исследователя П. П. Лазарева. В работах английских учёных П. Бойла, Э. Конуэя и А. Ходжкина, А. Хаксли и Б. Каца получила глубокое развитие мембранная теория возбуждения. Советский цитофизиолог Д. Н. Насонов установил роль клеточных белков в процессах возбуждения. С исследованиями процесса возбуждения тесно связано развитие учения о медиаторах, т. е. химических передатчиках нервного импульса в нервных окончаниях (австр. фармаколог О. Лёви, Самойлов, И. П. Разенков, А. В. Кибяков, К. М. Быков, Л. С. Штерн, Е. Б. Бабский, Х. С. Коштоянц в СССР; У. Кеннон в США; Б. Минц во Франции и др.). Развивая представления об интегративной деятельности нервной системы, австралийский физиолог Дж. Эклс подробно разработал учение о мембранных механизмах синаптической передачи.

В середине 20 в. американский учёный Х. Мэгоун и итальянский – Дж. Моруцци открыли неспецифические активирующие и тормозные влияния ретикулярной формации на различные отделы мозга. В связи с этими исследованиями значительно изменились классические представления о характере распространения возбуждений по центральной нервной системе, о механизмах корково-подкорковых взаимоотношений, сна и бодрствования, наркоза, эмоций и мотиваций. Развивая эти представления, советский физиолог П. К. Анохин сформулировал понятие о специфическом характере восходящих активирующих влияний подкорковых образований на кору мозга при реакциях различного биологического качества. Детально изучены функции лимбической системы мозга (амер. учёный П. Мак-Лейн, сов. физиолог И. С. Бериташвили и др.), выявлено её участие в регуляции вегетативных процессов, в формировании эмоций и мотиваций, процессов памяти, изучаются физиологические механизмы эмоций (амер. исследователи Ф. Бард, П. Мак-Лейн, Д. Линдели, Дж. Олдс; итал. – А. Цанкетти; швейцарский – Р. Хесс, Р. Хунспергер; советский – Бериташвили, Анохин, А. В. Вальдман, Н. П. Бехтерева, П. В. Симонов и др.). Исследования механизмов сна получили значительное развитие в работах Павлова, Хесса, Моруцци, франц. исследователя Жуве, сов. исследователей Ф. П. Майорова, Н. А. Рожанского, Анохина, Н. И. Гращенкова и др.

В начале 20 в. сложилось новое учение о деятельности желёз внутренней секреции – эндокринология. Были выяснены основные нарушения физиологических функций при поражениях желёз внутренней секреции. Сформулированы представления о внутренней среде организма, единой нейро-гуморальной регуляции, гомеостазе, барьерных функциях организма (работы Кеннона, сов. учёных Л. А. Орбели, Быкова, Штерн, Г. Н. Кассиля и др.). Исследованиями Орбели и его учеников (А. В. Тонких, А. Г. Гинецинского и др.) адаптационно-трофической функции симпатической нервной системы и её влияния на скелетную мускулатуру, органы чувств и центральную нервную систему, а также школой А. Д. Сперанского – влияние нервной системы на течение патологических процессов – было развито представление Павлова о трофической функции нервной системы. Быков, его ученики и последователи (В. Н. Черниговский, И. А. Булыгин, А. Д. Слоним, И. Т. Курцин, Э. Ш. Айрапетьянц, А. В. Риккль, А. В. Соловьев и др.) развили учение о кортико-висцеральной физиологии и патологии. Исследованиями Быкова показана роль условных рефлексов в регуляции функций внутренних органов.

В середине 20 в. значительных успехов достигла Ф. питания. Были изучены энерготраты людей различных профессий и разработаны научно обоснованные нормы питания (сов. учёные М. Н. Шатерников, О. П. Молчанова, нем. исследователь К. Фойт, амер. физиолог Ф. Бенедикт и др.). В связи с космическими полётами и исследованиями водного пространства развиваются космическая и подводная Ф. Во 2-й половине 20 в. активно разрабатывается Ф. сенсорных систем (сов. исследователи Черниговский, А. Л. Вызов, Г. В. Гершуни, Р. А. Дуринян, швед. исследователь Р. Гранит, канад. учёный В. Амасян). Сов. исследователь А. М. Уголев открыл механизм пристеночного пищеварения. Были открыты центральные гипоталамические механизмы регуляции голода и насыщения (амер. исследователь Дж. Бробек, инд. учёный Б. Ананд и многие др.).

Новую главу составило учение о витаминах, хотя необходимость этих веществ для нормальной жизнедеятельности была установлена ещё в 19 в. – работы русского учёного Н. И. Лунина.

Крупные успехи достигнуты в изучении функций сердца (работы Э. Старлинга, Т. Льюиса в Великобритании; К. Уиггерса в США; А. И. Смирнова, Г. И. Косицкого, Ф. З. Меерсона в СССР; и др.), кровеносных сосудов (работы Х. Геринга в Германии; К. Гейманса в Бельгии; В. В. Парина, Черниговского в СССР; Э. Нила в Великобритании; и др.) и капиллярного кровообращения (работы дат. учёного А. Крога, сов. физиолога А. М. Чернуха и др.). Изучен механизм дыхания и транспорт газов кровью (работы Дж. Баркрофта, Дж. Холдейна в Великобритании; Д. Ван Слайка в США; Е. М. Крепса в СССР; и др.). Установлены закономерности функционирования почек (исследования англ. учёного А. Кешни, американского – А. Ричардса, и др.). Сов. физиологи обобщили закономерности эволюции функций нервной системы и физиологических механизмов поведения (Орбели, Л. И. Карамян и др.). На развитие Ф. и медицины оказали влияние работы канадского патолога Г. Селье, сформулировавшего (1936) представление о стрессе как неспецифической адаптивной реакции организма при действии внешних и внутренних раздражителей. Начиная с 60-х гг. в Ф. всё шире внедряется системный подход. Достижением сов. Ф. является разработанная Анохиным теория функциональной системы, согласно которой различные органы целого организма избирательно вовлекаются в системные организации, обеспечивающие достижение конечных, приспособительных для организма результатов. Системные механизмы деятельности мозга успешно разрабатываются рядом советских исследователей (М. Н. Ливанов, А. Б. Коган и многие др.).

Современные тенденции и задачи физиологии. Одна из основных задач современной Ф. – выяснение механизмов психической деятельности животных и человека с целью разработки действенных мероприятий против нервно-психических болезней. Решению этих вопросов способствуют исследования функциональных различий правого и левого полушарий мозга, выяснение тончайших нейронных механизмов условного рефлекса, изучение функций мозга у человека посредством вживленных электродов, искусственного моделирования психопатологических синдромов у животных.

Физиологические исследования молекулярных механизмов нервного возбуждения и мышечного сокращения помогут раскрыть природу избирательной проницаемости клеточных мембран, создать их модели, понять механизм транспорта веществ через клеточные мембраны, выяснить роль нейронов, их популяций и глиальных элементов в интегративной деятельности мозга, и в частности в процессах памяти. Изучение различных уровней центральной нервной системы позволит выяснить их роль в формировании и регуляции эмоциональных состояний. Дальнейшее изучение проблем восприятия, передачи и переработки информации различными сенсорными системами позволит понять механизмы формирования и восприятия речи, распознавания зрительных образов, звуковых, тактильных и др. сигналов. Активно развивается Ф. движений, компенсаторных механизмов восстановления двигательных функций при различных поражениях опорно-двигательного аппарата, а также нервной системы. Проводятся исследования центральных механизмов регуляции вегетативных функций организма, механизмов адаптационно-трофического влияния вегетативной нервной системы, структурно-функциональной организации вегетативных ганглиев. Исследования дыхания, кровообращения, пищеварения, водно-солевого обмена, терморегуляции и деятельности желёз внутренней секреции позволяют понять физиологические механизмы висцеральных функций. В связи с созданием искусственных органов – сердца, почек, печени и др. Ф. должна выяснить механизмы их взаимодействия с организмом реципиентов. Для медицины Ф. решает ряд задач, например определение роли эмоциональных стрессов при развитии сердечно-сосудистых заболеваний и неврозов. Важные направления Ф. – возрастная физиология и геронтология. Перед Ф. с.-х. животных стоит задача увеличения их продуктивности.

Интенсивно изучаются эволюционные особенности морфо-функциональной организации нервной системы и различных сомато-вегетативных функций организма, а также эколого-физиологические изменения организма человека и животных. В связи с научно-техническим прогрессом назрела настоятельная необходимость изучения адаптации человека к условиям труда и быта, а также к действию различных экстремальных факторов (эмоциональных стрессов, воздействия различных климатических условий и т.д.). Актуальная задача современной Ф. состоит в выяснении механизмов устойчивости человека к стрессорным воздействиям. С целью исследования функций человека в космических и подводных условиях проводятся работы по моделированию физиологических функций, созданию искусственных роботов и т.п. В этом направлении широкое развитие приобретают самоуправляемые эксперименты, в которых с помощью ЭВМ удерживаются в определённых границах различные физиологические показатели экспериментального объекта, несмотря на различные воздействия на него. Необходимо усовершенствовать и создать новые системы защиты человека от неблагоприятного воздействия загрязнённой среды, электромагнитных полей, барометрического давления, гравитационных перегрузок и др. физических факторов.

Различают анатомию систематическую, топографическую и пластическую. Систематическая анатомия изучает организм по системам (система органов опоры и движения, система органов пищеварения и др.). Топографическая анатомия изучает взаимное расположение органов в отдельных областях человеческого тела, преимущественно с практической точки зрения. Пластическая анатомия (анатомия для художников) объясняет закономерности строения и пропорции внешних форм тела.

Физиология - наука о функциях живого организма как единого целого, о процессах, протекающих в нем, и механизмах его деятельности. Основная задача физиологии - раскрытие законов жизнедеятельности живого организма и управление ими. К настоящему времени физиология человека и животных накопила огромный фактический материал. Это привело к тому, что от физиологии, целостной науки о функциях организма, отпочковались и стали самостоятельными несколько научных направлений. Среди них самостоятельной ветвью физиологии стала возрастная физиология (изучает особенности жизнедеятельности организма в различные периоды онтогенеза). Физиология, как наука о функциях организма, расурывает законы деятельности головного мозга, обосновывает материальную природу сложнейших форм приспособления организма к условиям среды, показывает материальную природу психической деятельности человека, что имеет немаловажное значение в формировании диалектико-материалистического мировоззрения.

Анатомия — наука о форме, строении и развитии организма. Основным методом анатомии было рассечение трупов (отсюда название: от греч. anatemne — рассечение). Анатомия человека изучает форму и строение человеческого тела и его органов.

Физиология изучает функции, а именно процессы жизнедеятельности целостного живого организма, его органов, тканей, клеток и структурных элементов клеток, а также развитие функций, их взаимосвязь и изменения в разных условиях внешней среды и при различном состоянии организма.

Анатомия и физиология являются составными частями биологии — науки о развитии, строении, функциях, взаимоотношениях живых существ и о связи их с внешней средой. В биологии выделяют морфологию — науку о форме (сюда же входит анатомия) и физиология как наука о содержании.

Деление это условно и базируется главным образом на различии задач и методов исследования.

 Классификация и методы в анатомии На ранних этапах развития анатомии проводилось лишь описание органов человеческого тела, которые наблюдали при вскрытии трупов. Отсюда возникло название «описательная анатомия». Описательный метод господствовал в анатомии вплоть до XX столетия, когда в связи с бурным развитием физиологии, хирургии и других отраслей прикладной медицины он перестал удовлетворять возрастающим потребностям медиков.

Систематическая анатомия изучает организм человека по системам органов, объединенных общей функцией, строением и развитием. Топографическая анатомия, (хирургическая) возникла, когда при хирургических вмешательствах потребовалось точно определять местоположение органов в теле.

Пластическая анатомия, объясняющая внешние формы и пропорции тела человека.

Функциональная анатомия.  Наряду с анализом в анатомии используют синтез — обобщение полученных данных об отдельных органах и системах в единое целое в связи с их функцией. Такой подход к изучению человеческого тела определяют как функциональный.

Динамическая анатомия раздел анатомии человека, "занимающийся изучением двигательного аппарата с функци­ональных позиций. Она имеет важное значение для правильного физического воспитания человека. В последнее время большое значение приобрела возрастная анатомия, изучающая возрастные изменения органов и тканей.

Сравнительная анатомия производит анализ строения животных разных классов и человека. Анатомия исследует, как сложился человеческий организм в его историческом развитии, развитие человеческого рода в процессе эволюции животных — в филогенезе.

Антропология — наука, изучающая естественную историю человека с учетом исторического развития общественной группы, к которой он принадлежит.

Методы исследования в анатомии и связь с другими науками Современная анатомия располагает самыми разно­образными методами исследования, использует современную оптику, рентгенографию (анатомия живого человека), пластические материалы для наполнения сосудов и полых органов. Новейшие достижения химии и физики позволяют применять новые вещества и методы консервации трупов и препаратов.

Гистология изучает структуры животного организма и человека в связи с их функциями, взаимосвязь обмена веществ и структурных элементов вплоть до субмикроскопических структур. Гистологию делят на:

цитологию (учение о клетке),

общую гистологию, или собственно учение о тканях, и

частную гистологию, или микроскопическую анатомию, изучающую тканевый и клеточный состав органов на препаратах, представляющих собой срезы органов толщиной от 5 до 50 мкм, обработанные специальными фиксаторами и красителями.

Гистофизиология. Организм представляет собой единое целое, где все взаимосвязано и взаимообусловлено. Клетки существуют в составе тканей, ткани образуют органы, структура которых в большой степени обусловлена взаимосвязью тканей.

Учение о взаимосвязи структур клеток, тканей и органов с их функцией теснейшим образом переплетается с физиологией и получило название гистофизиологии. Последняя является одним из основных направлений гистологии.

Гистохимия и цитохимия Большое развитие в гистологии в последние годы получили гистохимическое и цитохимическое направления. В этих разделах гистология сливается в биохимией, в связи с чем в гистологии выделены особые разделы — гистохимия и цитохимия.

Современная гистология вооружена сложной оптической аппаратурой, пользуется световой, люминесцентной и электронной микроскопией, очень чувствительными гистохимическими реакциями и другими методами, позволяющими изучать субмикроскопические структуры клетки с физиологических позиций.

Эмбриология Каждая структура развивается в процессе онтогенеза — индивидуального развития организма, от момента оплодотворения яйцеклетки и до смерти, поэтому анатомия и гистология тесно связаны с наукой, изучающей развитие организма до его рождения,— эмбриологией.

 Классификация и методы в физиологии  Физиологию делят на общую физиологию, одним из разделов которой является физиология клетки (цитофизиология), изучающая общие закономерности реагирования живой материи на воздействие окружающей среды, основные жизненные процессы, свойственные всем живым организмам. Выделяют сравнительную физиологию — науку о специфике организмов разных видов или одного и того же вида в процессе индивидуального развития. Задачей сравнительной (эволюционной) физиологии является изучение закономерностей видового и индивидуального развития функций. Наряду с общей и сравнительной физиологией существуют специальные, или частные, разделы физиологии. К ним относят физиологию пищеварения, кровообращения, выделения и др. В физиологии человека выделяют также физиологию труда, питания, физических упражнений и спорта, возрастную физиологию.

Методы и связь с др. науками Физиология в своих исследованиях опирается на законы физики и химии, в связи, с чем в последнее время особое распространение получили биологическая физика и биологическая химия. Значительных успехов достигла электрофизиология, изучающая электрические явления в живом организме. Немалое значение для физиологии приобретает и кибернетика. Физиология близко связана со всеми медицинскими специальностями, ее достижения постоянно используются в практической медицине, которая в свою очередь поставляет материал для физиологических исследований.

Физиология — наука экспериментальная. Применение в физиологии физических, химических и технических методов позволило оснастить физиологические лаборатории приборами, позволяющими получать информацию о сложнейших процессах, происходящих в организме.

 Методы физиологических экспериментов очень разнообразны. Среди них можно назвать методы раздражения, удаления (экстирпация), регистрации биотоков, пересадки органов (трансплантация), денервации (перерезка нервных проводников), сосудистых анастомозов, фистул, изолированных органов и др.

Метод радиотелеметрии, т. е. передачи на расстояние физиологической информации при помощи радиосвязи является крупнейшим достижением физиологии. Этот способ, в частности, используется для изучения различных функций человека во время космических полетов. Разработаны новейшие методы одновременной регистрации многообразных процессов, протекающих в организме. В последние годы физиологи для анализа и обработки данных используют электронные счетно-решающие устройства.

Указанные разделы морфологии и физиологии изучают здорового человека, а потому называются соответственно нормальной анатомией и нормальной физиологией в отличие от патологической анатомии и патологической физиологии.

КРАТКИЙ ИСТОРИЧЕСКИЙ ОЧЕРК РАЗВИТИЯ АНАТОМИИ И ФИЗИОЛОГИИ

Правильное понимание современных анатомии и физиологии возможно лишь при знании их становления и развития.

Врачевание возникло раньше, чем появились сведения о строении и функции органов тела животных и человека. В древние времена вскрытие животных производилось при жертвоприношениях и приготовлении пищи, вскрытие человека — при бальзамировании (предохранение от разложения) трупов царственных особ. Отрывочные сведения о строении человеческого тела были недостаточными для правильного представления о нем. Техника анатомирования при бальзамировании была крайне примитивна.

Медицина в античной Греции достигла небывалых для того времени успехов и пользовалась признанием далеко за пределами страны. Врачи были окружены исключительным почетом, был даже утвержден особый культ бога врачевания Асклепия (Эскулапа — сына Аполлона), служителей которого называли асклепиадами.

Впервые наиболее точные сведения о строении тела животных и человека встречаются в трудах величайшего врача и мыслителя древности Гиппократа (460—377 гг. до н. э.).

Аристотель (384—322 гг. до н. э.) — виднейший представитель книдосских асклепиадов, указал на сердце как на главный орган, приводящий в движение кровь. Однако представления Аристотеля о движении крови были оши­бочными и крайне запутанными.

Большое влияние на развитие анатомии и медицинской науки вообще имела Александрийская медицинская школа. Этому способствовало то, что врачам в Александрии не воспрещалось вскрывать трупы людей с научной целью.

Среди врачей-теоретиков этой школы, внесших значительный вклад в развитие анатомии, были Герофил и Эразистрат Герофил (род. около 304 г. до н. э.) объединил все известные до него сведения по анатомии человека и дополнил их своими наблюдениями. Эразистрат (род. около 300 г. до н. э.). сделал полное и точное по тому времени описание печени и желчных ходов.

Александрийской медицинской школе принадлежит открытие способа перевязки кровеносных сосудов при кровотечениях.

К началу нашей эры была уже подготовлена почва для развития медицины. Выдающимся врачом этого периода был Клавдий Гален (130—201 гг. н. э.). Своими публичными выступлениями, которые сопровождались вскрытием трупов животных, Гален завоевал широкую известность. Развивая идеалистический взгляд Аристотеля на природу организма, он рассматривал организм как аппарат, посредством которого душа осуществляет свои функции. Особенно большое значение в то время имела созданная им теория кровообращения. Согласно этой теории, печень считалась центральным кроветворным и кровеносным органом, от которого кровь распространяется по всему телу, а сердце — центральным органом циркуляции «жизненной пневмы» в организме.

Неправильное представление о строении сосудов было результатом недостаточного анатомического наблюдения и переноса данных о строении животных на человека. Авторитет Галена в медицине и анатомии был огромен, и в течение 13 веков медики обучались по его произведениям. Даже в XV веке не допускали возможности проверки его положений. Господствующие в странах Запада и Востока религиозные запреты резко тормозили развитие медицины, и лишь отдельным ученым удавалось внести что-либо новое в эту науку.

Яркой личностью был таджикский ученый, врач и философ Абу Али Ибн Сина (Авиценна), родившийся возле Бухары (980—1037). Он написал «Канон медицины», в котором содержались все имевшиеся сведения о медицине, и «Введение в анатомию и физиологию».

Средневековая наука находилась почти в полном подчинении у служителей церкви и отличалась оторванностью от жизни, односторонностью и трафаретностью мышления, пронизанного религиозными предрассудками. Однако и в это время неоднократно производились попытки реформации медицины. Выделились специальные школы во Франции и Италии.

Знаменитый художник и ученый Леонардо да Винчи (1452—1519) усердно занимался анатомией и сделал сотни рисунков с препаратов. Эти рисунки составили ценнейшие анатомические материалы.

Реформатором средневековой и основоположником современной анатомии считают Андреаса Везалия (1514— 1564). Воспитанный на учении Галена, он не довольствовался редкими вскрытиями трупов, которые производили тогда «для банщиков и медиков», а добывал для изучения трупы на кладбищах. В 1543г в Базеле вышел его мо­нументальный труд «Семь книг о строении тела человека». Это было первое обстоятельное руководство по анатомии, изложенное на основании препарирования.

Вслед за Везалием в анатомии и физиологии выделяются такие ученые, как Фаллопий (1523—1562), Евстахий (умер в 1574 г.), Фабриций (1537—1619), продолжившие его исследования.

Серветом и Гарвеем было опровергнуто представление Галена о кровообращении. Сервет (1509—1553) —врач и богослов, родился в Испании, выступал против догматов церкви, за что подвергался преследованию церковников. Изучая медицину и анатомию, он правильно описал малый (легочный) круг кровообращения, разгадав его физиологический смысл.

В 1628г Гарвей (1578—1657) установил наличие большого круга кровообращения. Для его изучения он с успехом применил экспериментальный метод. Гарвей сравнил работу сердца с работой насоса, нагнетающего кровь в сосуды. Для утверждения его теории кровообращения

особо важное значение имело открытие в 1661г Мальпиги (1628—1694) видимых под микроскопом мельчайших сосудов — капилляров.

Одновременно с открытием Гарвея Азелио (1581— 1626) обнаружил в брыжейке собаки лимфатические сосуды и описал их.

Одним из важнейших условий развития морфологии было открытие и совершенствование увеличительных оптических приборов.

Создателем общей теории анатомии является Биша (1771 —1802). В книге «Общая анатомия» (1801) он объединил по функциональным признакам разрозненные ранее представления о тканях, органах и системах органов.

Достижения анатомии предшествовали успехам физиологии, так как знание строения органов является необходимой предпосылкой к изучению их функций.

Исследования в области анатомии в XVI веке подготовили почву для физиологических наблюдений, в частности для открытия кровообращения Гарвеем. Очень важным для развития физиологии явилось открытие в первой половине XVII века рефлекса французским философом Декартом. В этот период в физиологии преобладало анатомическое направление, хотя все большее значение приобретали успехи развивающихся физики и химии. В XVII—XVIII веках господствовал метафизический образ мышления, идея развития была чуждой, а все явления в природе рассматривались как постоянные и неизменные.

Для развития эволюционной морфологии огромное значение имело учение Дарвина (1809—1882) о влиянии внешних факторов на развитие форм и структур организмов, а также наследование их потомством. Основное положение эволюционной теории Дарвина состоит в том, что развитие организмов происходит в условиях борьбы за существование и под их влиянием. Ф. Энгельс отметил, что Дарвин нанес сильнейший удар метафизическому взгляду на природу, доказав, что весь современный органический мир, растения и животные, а следовательно, и человек суть продукты процесса развития, длившегося миллионы лет.

Шванн (1810—1882) в 1839 г. создал общепризнанную теперь клеточную теорию строения организмов, которая быстро стала ведущей в биологии. Открытие клеток в составе организма дало основание выделить из анатомии и методически определить содержание и задачи гистологии и эмбриологии.

В России до XVII века врачи были лишь при царском дворе. Только в XVII веке в Москве создается первая медицинская школа при Аптекарском приказе. Петр I поставил задачу привлечь в Россию врачей, которые могли бы обучать русских людей анатомии и медицине.

Находясь в Голландии, он сам изучил анатомию человека и вывез оттуда коллекцию анатомических препаратов Рюиша, которая и сейчас хранится в музее редкостей (кунсткамере) в Ленинграде.Первый госпиталь и медицинская школа были учреждены Петром I для нужд армии в Москве, а затем в Петербурге. В 1755г. в Москве был открыт первый в России университет, а в его составе медицинский факультет. В Петербурге в 1798г. была основана Медико-хирургическая академия. В Московской госпитальной школе анатомию изучали не только по рисункам, но и по трупам, однако трупы доставляли для занятий лишь в зимнее время, так как бальзамирование их было слишком дорого.

По мере развития анатомии, разработки новых методов исследования, создания теорий развития, строения и функций органов выделился ряд новых дисциплин: патологическая анатомия, гистология, эмбриология, несколько позже — сравнительная и топографическая анатомия, антропология. Изучение функций органов и систем производилось спе­циальными методами и было выделено в особую науку — физиологию.

В XVIII—XIX веках в естествознании и анатомии человека в России особенно выделялись работы М. В. Ломоносова, А. Ф. Каверзнева, М. И. Шеина, К. И. Щепина, А. П. Протасова, С. Г. Зыбелина, А. М. Шумлянского, П. А. Загорского, Е. О. Мухина, И. В. Буяльского, Н. И. Пирогова и др.

М. В. Ломоносов (1711—1765) одним из первых обосновал явления универсальной изменчивости природы и сформулировал закон сохранения вещества. Это существенно отразилось на развитии материалистического естест­вознания. Он подчеркивал необходимость изучения строения человеческого тела.

П. А. Загорский (1764—1846) был основателем первой научной анатомической школы и—руководитель кафедры анатомии и физиологии Медико-хирургической академии. Он написал учебник анатомии, выдержавший пять изданий. Замечательны его сравнительно-анатомические исследования артерий.

Ученик П. А. Загорского И. В. Буяльский (1789—1866), профессор кафедры анатомии, Военно-медицинской академии, выдающийся хирург и блестящий анатом, читал лекции по нормальной, топографической и патологической анатомии, предложил метод бальзамирования трупов. Особое значение для анатомии имеет его атлас «Таблицы хирургической анатомии».

В Московском университете работал профессор-анатом Е. О. Мухин (1766— 1850), более 20 лет преподававший анатомию и физиологию. Е. О. Мухин составил «Курс анатомии для воспитанников, обучающихся медико-хирургической науке», и перевел с латинского языка на русский ряд научных книг.

В конце XIX столетия кафедрой нормальной анатомии медицинского факультета Московского университета заведовал Д. Н. Зернов (1843—1917). Широко известны его работы по изучению индивидуальных особенностей борозд и извилин головного мозга человека. Составленное им «Руководство по описательной анатомии человека» в течение многих лет являлось одним из лучших учебников по анатомии. Д. Н. Зернов преподавал анатомию и на Высших женских курсах в Москве. Его сменил на кафедре Московского университета проф. П. И. Карузин (1864— 1939); а заведующим кафедрой анатомии Высших женских курсов был избран ученик Д. Н. Зернова А. А. Дешин (1869—1946). В дальнейшем эта кафедра преобразовалась в кафедру анатомии II Московского медицинского института. А. А. Дешин был активным участником всесоюзных съездов анатомов, постоянно выступал с обстоятельными сообщениями по проблемам практической медицины. С 1931 г, во II Московском медицинском институте была выделена кафедра анатомии педиатрического факультета, которой заведовал П. П. Дьяконов (1882— 1953).

ФИЗИОЛОГИЯ МЫШЕЧНОЙ ТКАНИ

 

Скелетные мышцы

 

Механизм мышечного сокращения

 

Скелетная мышца представляет собой сложную систему, преобразующую химическую энергию в механическую работу и тепло. В настоящее время хорошо исследованы молекулярные механизмы этого преобразования.

 

Структурная организация мышечного волокна. Мышечное волокно является многоядерной структурой, окруженной мембраной и содержащей специализированный сократительный аппарат — миофибриллы. Кроме этого, важнейшими компонентами мышечного волокна являются митохондрии, системы продольных трубочек — саркоплазматическая сеть (ретикулум) и система поперечных трубочек — Т-система. Функциональной единицей сократительного аппарата мышечной клетки является саркомер (рис. 2.20,А); из саркомеров состоит миофибрилла. Саркомеры отделяются друг от друга Z-пластинками. Саркомеры в миофибрилле расположены последовательно, поэтому сокращение саркомеров вызывает сокращение миофибриллы и общее укорочение мышечного волокна.

 

Изучение структуры мышечных волокон в световом микроскопе позволило выявить их поперечную исчерченность. Электронно-микроскопические исследования показали, что поперечная исчерченность обусловлена особой организацией сократительных белков миофибрилл — актина (молекулярная масса 42 000) и миозина (молекулярная масса около 500 000). Актиновые филаменты представлены двойной нитью, закрученной в двойную спираль с шагом около 36,5 нм. Эти филаменты длиной 1 мкм и диаметром 6—8 нм, количество которых достигает около 2000, одним концом прикреплены к Z-пластинке. В продольных бороздках актиновой спирали располагаются нитевидные молекулы белка тропомиозина. С шагом, равным 40 нм, к молекуле тропомиозина прикреплена молекула другого белка — тропонина. Тропонин и тропомиозин играют важную роль в механизмах взаимодействия актина и миозина. В середине саркомера между нитями актина располагаются толстые нити миозина длиной около 1,6 мкм. В поляризационном микроскопе эта область видна в виде полоски темного цвета (вследствие двойного лучепреломления) — анизотропный А-диск. В центре его видна более светлая полоска Н. В ней в состоянии покоя нет актиновых нитей. По обе стороны А-диска видны светлые изотропные полоски — I-диски, образованные нитями актина. В состоянии покоя нити актина и миозина незначительно перекрывают друг друга таким образом, что общая длина саркомера составляет около 2,5 мкм. При электронной микроскопии в центре Н-полоски обнаружена М-ли-ния — структура, которая удерживает нити миозина. На поперечном срезе мышечного волокна можно увидеть гексагональную организацию миофиламента: каждая нить миозина окружена шестью нитями актина (рис. 2.20, Б).

 

При электронной микроскопии видно, что на боковых сторонах миозиновой нити обнаруживаются выступы, получившие название поперечных мостиков. Они ориентированы по отношению к оси миозиновой нити под углом 120°. Согласно современным представлениям, поперечный мостик состоит из головки и шейки. Головка приобретает выраженную АТФазную активность при связывании с актином. Шейка обладает эластическими свойствами и представляет собой шарнирное соединение, поэтому головка поперечного мостика может поворачиваться вокруг своей оси.

 

Использование микроэлектродной техники в сочетании с интерференционной микроскопией позволило установить, что нанесение электрического раздражения на область Z-пластинки приводит к сокращению саркомера, при этом размер зоны диска А не изменяется, а величина полосок Н и I уменьшается. Эти наблюдения свидетельствовали о том, что длина миозиновых нитей не изменяется. Аналогичные результаты были получены при растяжении мышцы — собственная длина актиновых и миозиновых нитей не изменялась. В результате этих экспериментов выяснилось, что изменялась область взаимного перекрытия актиновых и миозиновых нитей. Эти факты позволили Н. Huxley и A. Huxley предложить независимо друг от друга теорию скольжения нитей для объяснения механизма мышечного сокращения. Согласно этой теории, при сокращении происходит уменьшение размера саркомера вследствие активного перемещения тонких актиновых нитей относительно толстых миозиновых. В настоящее время выяснены многие детали этого механизма и теория получила экспериментальное подтверждение.

 

Механизм мышечного сокращения. В процессе сокращения мышечного волокна в нем происходят следующие преобразования:

 

А. Электрохимическое преобразование:

 

1.     Генерация ПД.

 

2.     Распространение ПД по Т-системе.

 

3.     Электрическая стимуляция зоны контакта Т-системы и саркоплазматического ретикулума, активация ферментов, образование инозитолтрифосфата,  повышение внутриклеточной  концентрации ионов Са2+.

 

Б. Хемомеханическое преобразование:

 

4.     Взаимодействие ионов Са2+ с тропонином, освобождение активных центров на актиновых филаментах.

 

5.     Взаимодействие миозиновой головки с актином, вращение головки и развитие эластической тяги.

 

6.     Скольжение нитей актина и миозина относительно друг друга, уменьшение размера саркомера, развитие напряжения или укорочение мышечного волокна.

 

Передача возбуждения с двигательного мотонейрона на мышечное волокно происходит с помощью медиатора ацетилхолина (АХ). Взаимодействие АХ с холинорецептором концевой пластинки приводит к активации АХ-чувствительных каналов и появлению потенциала концевой пластинки, который может достигать 60 мВ. При этом область концевой пластинки становится источником раздражающего тока для мембраны мышечного волокна и на участках клеточной мембраны, прилегающих к концевой пластинке, возникает ПД, который распространяется в обе стороны со скоростью примерно 3—5 м/с при температуре 36 oС. Таким образом, генерация ПД является первым   этапом  мышечного сокращения.

 

Вторым этапом является распространение ПД внутрь мышечного волокна по поперечной системе трубочек, которая служит связующим звеном между поверхностной мембраной и сократительным аппаратом мышечного волокна. Т-система тесно контактирует с терминальными цистернами саркоплазматической сети двух соседних саркомеров. Электрическая стимуляция места контакта приводит к активации ферментов, расположенных в месте контакта и образованию инозитолтрифосфата. Инозитолтрифосфат активирует кальциевые каналы мембран терминальных цистерн, что приводит к выходу ионов Са2+ из цистерн и повышению внутриклеточной концентрации Са2+ с 107до 105 M. Совокупность процессов, приводящих к повышению внутриклеточной концентрации Са2+ составляет сущность третьего этапа мышечного сокращения. Таким образом, на первых этапах происходит преобразование электрического сигнала ПД в химический — повышение внутриклеточной концентрации Са2+, т. е. электрохимическое преобразование.

 

При повышении внутриклеточной концентрации ионов Са2+ тропомиозин смещается в желобок между нитями актина, при этом на актиновых нитях открываются участки, с которыми могут взаимодействовать поперечные мостики миозина. Это смещение тропомиозина обусловлено изменением конформации молекулы белка тропонина при связывании Са2+ . Следовательно, участие ионов Са2+ в механизме взаимодействия актина и миозина опосредовано через тропонин и тропомиозин.

 

Существенная роль кальция в механизме мышечного сокращения была доказана в опытах с применением белка экворина, который при взаимодействии с кальцием излучает свет. После инъекции экворина мышечное волокно подвергали электрической стимуляции и одновременно измеряли мышечное напряжение в изометрическом режиме и люминесценцию экворина. Обе кривые полностью коррелировали друг с другом (рис. 2.21). Таким образом, четвертым этапом электромеханического сопряжения является взаимодействие кальция с тропонином.

 

Следующим, пятым, этапом электромеханического сопряжения является присоединение головки поперечного мостика к актиновому филаменту к первому из нескольких последовательно расположенных стабильных центров. При этом миозиновая головка поворачивается вокруг своей оси, поскольку имеет несколько активных центров, которые последовательно взаимодействуют с соответствующими центрами на актиновом филаменте. Вращение головки приводит к увеличению упругой эластической тяги шейки поперечного мостика и увеличению напряжения. В каждый конкретный момент в процессе развития сокращения одна часть головок поперечных мостиков находится в соединении с актиновым филаментом, другая свободна, т. е. существует последовательность их взаимо­действия с актиновым филаментом. Это обеспечивает плавность процесса сокращения. На четвертом и пятом этапах происходит хемомеханическое преобразование.

 

Последовательная реакция соединения и разъединения головок поперечных мостиков с актиновым филаментом приводит к скольжению тонких и толстых нитей относительно друг друга и уменьшению размеров саркомера и общей длины мышцы, что является шестым этапом. Совокупность описанных процессов составляет сущность теории скольжения нитей

 

Первоначально полагали, что ионы Са2+ служат кофактором АТФазной активности миозина. Дальнейшие исследования опровергли это предположение. У покоящейся мышцы актин и миозин практически не обладают АТФазной активностью. Присоединение головки миозина к актину приводит к тому, что головка приобретает АТФазную активность.

 

Гидролиз АТФ в АТФазном центре головки миозина сопровождается изменением конформации последней и переводом ее в новое, высокоэнергетическое состояние. Повторное присоединение миозиновой головки к новому центру на актиновом филаменте вновь приводит к вращению головки, которое обеспечивается запасенной в ней энергией. В каждом цикле соединения и разъединения головки миозина с актином расщепляется одна молекула АТФ на каждый мостик. Быстрота вращения определяется скоростью расщепления АТФ. Очевидно, что быстрые фазические волокна потребляют значительно больше АТФ в единицу времени и сохраняют меньше химической энергии во время тонической нагрузки, чем медленные волокна. Таким образом, в процессе хемомеханического преобразования АТФ обеспечивает разъединение головки миозина и актинового филамента и энергетику для дальнейшего взаимодействия головки миозина с другим участком актинового филамента. Эти реакции возможны при концентрации кальция выше 106М.

 

Описанные механизмы укорочения мышечного волокна позволяют предположить, что для расслабления в первую очередь необходимо понижение концентрации ионов Са2+. Экспериментально было доказано, что саркоплазматическая сеть имеет специальный механизм — кальциевый насос, который активно возвращает кальций в цистерны. Активация кальциевого насоса осуществляется неорганическим фосфатом, который образуется при гидролизе АТФ, а энергообеспечение работы кальциевого насоса также за счет энергии, образующейся при гидролизе АТФ. Таким образом, АТФ является вторым важнейшим фактором, абсолютно необходимым для процесса расслабления. Некоторое время после смерти мышцы остаются мягкими вследствие прекращения тонического влияния мотонейронов (см. главу 4). Затем концентрация АТФ снижается ниже

Физиологические основы спортивной тренировки женщин

Правильное построение тренировочного процесса обеспечивает гармоничное развитие основных физических, нравственных и морально-волевых качеств; создает прочный фундамент общей и специальной подготовленности спортсменок, позволяет доводить до высокого уровня возможности организма на базе постепенного их нарастания, в щадящем режиме, с использованием вариативности нагрузок по направленности и напряженности; обеспечивает индивидуализацию тренировочных нагрузок с учетом фаз специфического биологического цикла и на основе регулярного комплексного контроля за самочувствием женщин.

Особое внимание должно уделяться подростковому периоду, когда физические упражнения должны сочетаться со сложной перестройкой всех функций организма в период полового созревания, и перегрузки могут приводить к функциональным расстройствам и задержке развития. У девочек-подростков 14-15 лет по сравнению со взрослым и женщинами кислородный запрос на работу умеренной мощности в 1,5 раза больше, а на работу, проходящую на уровне МПК — в 1,2 раза выше; меньше дыхательный объем и систолический объем крови, но выше частота дыхания и сердцебиений при нагрузке; артериовенозная разность и коэффициент использования кислорода ниже; при работе на уровне МПК рН крови снижается лишь до 7,3; отказ наступает при небольших сдвигах рН игомеостаза.

Грамотное использование физических нагрузок приводит к повышению функциональных возможностей организма девочек и девушек, которые по многим важнейшим показателям функционального состояния, аэробных и анаэробных возможностей, физических качеств начинают существенно превосходить своих сверстниц, не занимающихся спортом. Для спортсменок, занимающихся циклическими видами спорта, особенно при тренировке на выносливость, характерны более высокие показатели аэробных возможностей организма, чем для спортсменок, в тренировке которых преобладает скоростно-силовая и скоростная направленность. Наибольшие значения отмечены у представительниц лыжных гонок — до 86 мл • кг • мин.

При силовой тренировке у спортсменок слабее, чему спортсменов выражена рабочая гипертрофия мышц, что связано с меньшим количеством мужских половых гормонов в женском организме. Однако использование тестостерона, других андрогенов ил и их производных для развития силы чрезвычайно вредно. Это приводит к патологическим нарушениям в женском организме — развитию мужских вторичных половых признаков, нарушению и пол ному прекращению овуляции и менструации, невозможности деторождения. С 1968 г по решению МОК на крупных международных соревнованиях обязательно проводится секс-контроль спортсменок для устранения лиц с признаками гермафродитизма.

Наибольшую статическую выносливость показывают конькобежки, а локальную — лыжницы и баскетболистки, особенно для мышц предплечья и сгибателей кисти.

Особенности пищеварения, обмена веществ и энергии

В дошкольном возрасте у ребенка сформированы молочные зубы, которые позволяют ему перейти от молочного питания к более грубой пище. С 5-6 лет начинается смена молочных зубов на постоянные, которая в основном заканчивается к периоду полового созревания, и только третьи большие коренные зубы формируются вплоть до возраста взрослого человека.

С появлением молочных зубов у ребенка начинается выраженное слюноотделение. Оно усиливается на протяжении первого года жизни и продолжает совершенствоваться по количеству и составу слюны с увеличением разнообразия пищи.

Размеры желудка постепенно увеличиваются, к 6-7 годам он приобретает форму, характерную для взрослого организма. К этому возрасту заметно развиваются мышцы, обеспечивающие движения желудка и перистальтику кишечника. У детей дошкольного и младшего школьного возраста еще малочисленны и недоразвиты пищеварительные железы. Желудочный сок беднее ферментами, активность их еще мала. Это затрудняет процесс переваривания пищи. Низкое содержание соляной кислоты снижает бактерицидные свойства желудочного сока, что приводит к частым желудочно-кишечным расстройствам у детей.

В дошкольном возрасте интенсивно развиваются функции поджелудочной железы и печени ребенка. В возрасте 6-9 лет активность желез пищеварительного тракта значительно усиливается, пищеварительные функции совершенствуются. Однако, принципиальное отличие пищеварения в детском организме от взрослого заключается в том, что у них представлено только пристеночное пищеварение и отсутствует внутриполостное переваривание пищи.

Недостаточность процессов всасывания в тонком кишечнике в некоторой степени компенсируется возможностью всасывания в желудке, которая сохраняется у детей до 10— летнего возраста.

Особенностью обменных процессов в детском организме является преобладание анаболических процессов над катаболическими. Растущему организму требуются повышенные нормы поступления питательных веществ, особенно белков. Для детей характерен положительный азотистый баланс, т. е. поступление азота в организм превышает его выведение.

Использование питательных продуктов идет в двух направлениях:

• для обеспечения роста и развития организма;

• для обеспечения двигательной активности.


По теме: методические разработки, презентации и конспекты

Дополнение к конспект по биомеханике

Биомеханика (от греч. «био» - жизнь и «механика» - орудие) возникла на стыке двух наук – биологии и механики. Таким образом, предметом биомеханики является изучение механического движения живых ...

конспект урока " Способы выражения дополнения. Прямое и косвенное дополнение"

Урок проведен в классе с детьми, имеющими достаточный уровень знаний, умений и навыков, с сформированным познавательным интересом. При разработке урока старалась учесть следующие особенности учащихся:...

Конспект урока Дополнение.Виды дополнений.

Конспект урока в 8 классе по теме : "Дополнение. Виды дополнений. Тип урока - "открытие новых знаний"....

Конспект урока по русскому языку "Дополнение. Способы выражения дополнения"

Цель: повторить основные сведения о второстепенных членах предложения, обобщить имеющиеся знания о дополнении, сформировать умение правильно определять способы выражения дополнений....

Конспект урока. Тема урока. Обособленные дополнения. Значение обособленных дополнений

Урок русского языка в 8 классеТема урока. Обособленные дополнения.  Значение обособленных дополненийЦель урока: дать понятие об обособлении дополнений, совершенствовать знания  учащихс...