Бимедианы четырехугольника
проект по геометрии (9 класс) на тему

Кривокора Алла Семеновна

Тема работы посвящена бимедианам четырехугольника и теореме Вариньона. Эти замечательные понятия не входят в программу по геометрии для средней школы. Однако при решении целого класса задач эти понятия позволяют легко получить решение, в то время когда традиционные подходы приводят к громоздким и утомительным преобразованиям

Скачать:

ВложениеРазмер
Файл teorema_varinona.pptx240.84 КБ
Microsoft Office document icon teorema_varinona.doc603 КБ

Предварительный просмотр:


Подписи к слайдам:

Слайд 1

Бимедианы четырехугольника Автор работы Харитонов Илья, ученик 9-Б класса Место выполнения работы: г.Ставрополь МБОУ СОШ №32 Научный руководитель: Кривокора А.С., учитель математики и физики

Слайд 2

Актуальность темы 1. Данная тема является дополнением и углублением изученных в курсе геометрии свойств. 2. Применение опыта решения планиметрических задач с использованием теоремы Вариньона и следствий из нее помогает повысить уровень пространственного воображения и уровень логической культуры. 3. Изучение данной темы поможет более глубоко подготовиться к вступительным экзаменам и успешному участию в математических конкурсах и олимпиадах. 4. Данная работа может быть использована для проведения практических занятий на элективных курсах с учащимися выпускных классов и при подготовке к Единому Государственному Экзамену и поступлению в ВУЗ.

Слайд 3

Цель исследования Изучить теорию вопроса и исследовать приемы решений планиметрических задач с использованием теоремы Вариньона и следствий из нее.

Слайд 4

Объект и предмет исследования Объект исследования – Теорема Вариньона Предметом данного исследования являются следствие из теоремы необходимые для решение задач.

Слайд 5

« Обладая литературой более обширной, чем алгебра и арифметика вместе взятые, и, по крайней мере, столь же обширной, как анализ, геометрия в большей степени чем любой другой раздел математики, является богатейшей сокровищницей интереснейших, но полузабытых вещей, которыми спешащее поколение не имеет времени насладиться». Е. Т. Белл.

Слайд 6

1. Основные теоретические сведения.

Слайд 7

Определение Бимедианы четырехугольника -это отрезки, соединяющие середины противоположных сторон.

Слайд 8

Одна из основных теорем о бимедианах четырехугольника принадлежит французскому механику и инженеру Пьеру Вариньону (1654 – 1722), написавшему учебник по элементарной геометрии (издан в 1731 г.), в котором эта теорема впервые и появилась.

Слайд 9

Теорема Вариньона . Формулировка: Четырехугольник, образованный путем последовательного соединения середин сторон выпуклого четырехугольника, является параллелограммом, и его площадь равна половине площади данного четырехугольника

Слайд 10

Доказательство: 1. рассмотрим (рис. ) одну из сторон четырехугольника KLMN , например KL . Так как KL является средней линией треугольника ABC , то KL ║ AC . По тем причинам MN ║ AC . Следовательно, KL ║ NM и KL = MN = AC /2 . таким образом, KLMN - параллелограмм. Этот параллелограмм называется параллелограммом Вариньона данного четырехугольника.

Слайд 11

Доказательство: 2 . средняя линия треугольника отсекает от него треугольник, площадь которого в четыре раза меньше площади исходного треугольника. Поэтому сама сумма площадей первого и третьего треугольников (см. рис.) равна четверти площади всего четырехугольника. То же и относительно суммы площадей второго и четвертого треугольников. Поэтому площадь параллелограмма KLMN составляет половину площади четырехугольника ABCD Теорема доказана.

Слайд 12

Следствия из теоремы. 1. Следствие 1. Параллелограмм Вариньона является ромбом тогда и только тогда, когда в исходном четырехугольнике: а) диагонали равны (рис. а); б) бимедианы перпендикулярны (рис.б). Рис. а) Рис. б)

Слайд 13

2. Параллелограмм Вариньона является прямоугольником тогда и только тогда, когда в исходном четырехугольнике: а) диагонали перпендикулярны(рис. а); б) бимедианы равны (рис.б). Рис. а) Рис. б)

Слайд 14

Следствие 2 Бимедианы четырехугольника и отрезок, соединяющий середины диагоналей, пересекаются в одной точке и делятся этой точкой пополам.

Слайд 15

Следствие 3.(теорема Эйлера). Для четырехугольника сумма квадратов всех сторон равна сумме квадратов диагоналей плюс учетверенный квадрат отрезка, соединяющего середины диагоналей, то есть .

Слайд 16

.Следствие 4.(теорема о бабочках). Суммы площадей накрест лежащих четырехугольников, образованных пересечением бимедиан LN и KM выпуклого четырехугольника ABCD равны (рис. ).

Слайд 17

Пример задачи Условие : докажите , что середины сторон прямоугольника являются вершинами ромба. Доказательство . Диагонали прямоугольника равны, поэтому середины сторон прямоугольника являются вершинами ромба (см.следствие 1: параллелограмм Вариньона является ромбом тогда и только тогда, когда в исходном четырехугольнике : диагонали равны

Слайд 18

Пример задачи Условие : У четырехугольника диагонали равны a и b . Найдите периметр четырехугольника, вершинами которого являются середины сторон данного четырехугольника . Решение. Периметр параллелограмма Вариньона равен a + b .

Слайд 19

Пример задачи Условие : докажите, что площадь параллелограмма, образованного прямыми, проходящими через вершины выпуклого четырехугольника и параллельными его диагоналям, в два раза больше площади исходного четырехугольника (рис.).

Слайд 20

Решение Так как AMOL , MONB , CKON , DKOL - параллелограммы, то Отсюда получаем , что , что и требовалось доказать.

Слайд 21

Заключение. Тема работы посвящена бимедианам четырехугольника и теореме Вариньона. Эти замечательные понятия не входят в программу по геометрии для средней школы. Однако при решении целого класса задач эти понятия позволяют легко получить решение, в то время когда традиционные подходы приводят к громоздким и утомительным преобразованиям.

Слайд 22

СПАСИБО ЗА ВНИМАНИЕ!!!



Предварительный просмотр:

Межшкольная  научно – практическая конференция   «Открытие - 2013»

Секция: физико - математическая  

Название работы: Бимедианы четырехугольника

Авторы работы: Харитонов Илья

 Место выполнения работы: г.Ставрополь,

 МБОУ СОШ №32 г.Ставрополя, 9 класс.

Научный руководитель: Кривокора Алла Семеновна,

 учитель математики и физики МБОУ СОШ №32 г.Ставрополя .

             

Ставрополь, 2013

Содержание

Введение………………………………………………………………………………3

1. Основные теоретические сведения

   1.1. Определение……………………………………………………………………4

   1.2. Теорема Вариньона…………………………………………………………….4

   1.3. Следствия из теоремы Вариньона

       1.3.1. Следствие 1………………………………………………………………...4

       1.3.2. Следствие 2………………………………………………………………...5

       1.3.3. Теорема Эйлера…………………………………………………………….6

       1.3.4. Теорема о бабочках……………………………………………………......6

2. Разбор задач

       2.1.Задачи из школьного курса геометрии…………………………………...…7

       2.2. Конкурсные задачи…………………………………………………………..8

3. Заключение…………………………………………………………………………..10

Литература…………………………………………………………………………….11

Введение.

«Обладая литературой более обширной, чем алгебра и арифметика вместе взятые, и, по крайней мере, столь же обширной, как анализ, геометрия в большей степени чем любой другой раздел математики, является богатейшей сокровищницей интереснейших, но полузабытых вещей, которыми спешащее поколение не имеет времени насладиться».

Е. Т. Белл.

        

Актуальность темы:

1. Данная тема является дополнением и углублением изученных в курсе геометрии свойств.

2. Применение опыта решения планиметрических  задач с использованием теоремы Вариньона и следствий из нее помогает повысить уровень пространственного воображения и уровень логической культуры.

3. Изучение данной темы поможет более глубоко подготовиться к вступительным экзаменам и успешному участию в математических конкурсах и олимпиадах.

4. Данная работа может быть использована для проведения  практических занятий на элективных курсах с учащимися выпускных классов и при подготовке к Единому Государственному Экзамену и поступлению в ВУЗ.

Цель работы:

        Изучить теорию вопроса и исследовать приемы решений планиметрических задач с использованием теоремы Вариньона и следствий из нее.

  1. Основные теоретические сведения.

  1. Определение.

Бимедианы четырехугольника – это отрезки, соединяющие середины противоположных сторон.

Одна из основных теорем о бимедианах четырехугольника принадлежит французскому механику и инженеру Пьеру Вариньону (1654 – 1722), написавшему учебник по элементарной геометрии (издан в 1731 г.), в котором эта теорема впервые и появилась.

1.2.Теорема Вариньона.

Формулировка:

Четырехугольник, образованный путем последовательного соединения середин сторон выпуклого четырехугольника, является параллелограммом, и его площадь равна половине площади данного четырехугольника.

Доказательство:

1. рассмотрим (рис. 1) одну из сторон четырехугольника KLMN, например KL. Так как KL является средней линией треугольника ABC, то KLAC. По тем причинам MNAC. Следовательно, KLNM и  KL=MN=AC/2. таким образом, - параллелограмм. Этот параллелограмм называется параллелограммом Вариньона данного четырехугольника.

2. средняя линия треугольника отсекает от него треугольник, площадь которого в четыре раза меньше площади исходного треугольника. Поэтому сама сумма площадей первого и третьего треугольников (см. рис.1) равна четверти площади всего четырехугольника. То же и относительно суммы площадей второго и четвертого треугольников. Поэтому площадь параллелограмма KLMN составляет половину площади четырехугольника ABCD

Теорема доказана.

 

1.3. Следствия из теоремы.

1.3.1. Следствие 1.

1. Параллелограмм Вариньона является ромбом тогда и только тогда, когда в исходном четырехугольнике:

     а) диагонали равны (см. рис. 2,а);

     б) бимедианы перпендикулярны (см. рис. 2,б).

Доказательство.

                                            

     а)  Так как диагонали  исходного четырехугольника равны, то стороны параллелограмма Вариньона будут равны (используя свойство средних линий треугольников, образованных при пересечении диагоналей исходного четырехугольника). Параллелограмм Вариньона является ромбом (по признаку ромба).

     б) Бимедианы исходного четырехугольника – это диагонали параллелограмма Вариньона. Так как в параллелограмме диагонали перпендикулярны, то этот параллелограмм является ромбом (по признаку ромба).

2. Параллелограмм Вариньона является прямоугольником тогда и только тогда, когда в исходном четырехугольнике:

     а) диагонали перпендикулярны(см. рис. 3,а);

     б) бимедианы равны (см. рис. 3,б).

Доказательство.

         

     а)  Так как диагонали исходного четырехугольника перпендикулярны, то стороны параллелограмма Вариньона будут перпендикулярны. Тогда параллелограмм Вариньона является прямоугольником (по признаку прямоугольника).

     б) Бимедианы исходного четырехугольника – это диагонали параллелограмма Вариньона. Так как в параллелограмме диагонали равны, то этот параллелограмм является прямоугольником (по признаку прямоугольника).

3. Параллелограмм Вариньона является квадратом тогда и только тогда, когда в исходном четырехугольнике:

     а) диагонали равны и  перпендикулярны(см. рис. 4,а);

     б) бимедианы равны и перпендикулярны (см. рис. 4,б).

Доказательство.

                                               

     а)  Так как диагонали исходного четырехугольника равны и перпендикулярны, то стороны параллелограмма Вариньона будут равны и перпендикулярны. Тогда параллелограмм Вариньона является квадратом (по признаку квадрата).

     б) Бимедианы исходного четырехугольника – это диагонали параллелограмма Вариньона. Так как в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм является квадратом (по признаку квадрата).

1.3.2. Следствие 2.

        Бимедианы четырехугольника и отрезок, соединяющий середины диагоналей, пересекаются в одной точке и делятся этой точкой пополам.

Доказательство.

Пусть KM и LN – бимедианы ABCD, PQ – отрезок, соединяющий середины диагоналей АС и BD.

То, что бимедианы KM и LN точкой пересечения делятся пополам, следует из того, что эти отрезки являются диагоналями параллелограмма Вариньона. Поэтому нам достаточно доказать, что отрезки PQ и LN их точкой пересечения делятся пополам (рис.5).

Используя теорему  о средней линии треугольника для соответствующих треугольников, имеем:

LQ║CD║PN  и  PL║AB║NQ.

Тем самым, PLQN – параллелограмм. По свойству параллелограмма следует, что отрезки PQ и LN их точкой пересечения делятся пополам. Что и требовалось доказать.

1.3.3. Следствие 3.(теорема Эйлера).

Для четырехугольника сумма квадратов всех сторон равна сумме квадратов диагоналей плюс учетверенный квадрат отрезка, соединяющего середины диагоналей, то есть.

Доказательство.

Уже было отмечено что LPNQ – параллелограмм (рис.6).

Поэтому

;

В последнем равенстве мы дважды воспользовались теоремой о средней линии треугольника. Аналогично для параллелограмма KPMQ имеем:

.

Кроме того,

,

Так как KLMN – параллелограмм Вариньона четырехугольника ABCD. Складывая первые два равенства и учитывая последнее, получаем соотношение Эйлера.

1.3.4.Следствие 4.(теорема о бабочках).

Суммы площадей накрест лежащих четырехугольников, образованных пересечением бимедиан LN и KM  выпуклого четырехугольника ABCD равны (рис. 7).

Доказательство.

Воспользуемся теоремой о средней линии треугольника.  Получаем:

.

Что и требовалось доказать.

2. Разбор задач.

2.1.задачи из школьного курса геометрии.

Рассмотрим задачи на бимедианы четырехугольника и теорему Вариньона, которые встречаются в школьном курсе геометрии.

 Задача 1.

Докажите, что а) середины сторон прямоугольника являются вершинами ромба. И наоборот, б) середины сторон ромба являются вершинами прямоугольника.

Доказательство.

а) Диагонали прямоугольника равны, поэтому середины сторон прямоугольника являются вершинами ромба (см.следствие 1, 1, а);

Стороны прямоугольника перпендикулярны, поэтому бимедианы перпендикулярны, тогда середины сторон прямоугольника являются вершинами ромба (см. следствие 1, 1, б).

б) диагонали ромба перпендикулярны, поэтому середины сторон ромба являются вершинами прямоугольника (см. следствие 1, 2, а);

Стороны ромба равны, поэтому середины сторон ромба являются вершинами прямоугольника (см. следствие 1, 2, б).

Задача 2.

У четырехугольника диагонали равны a и b. Найдите периметр четырехугольника, вершинами которого являются середины сторон данного четырехугольника.

Решение.

Периметр параллелограмма Вариньона равен a+b.

Задача 3.

Докажите, что середины сторон четырехугольника являются вершинами параллелограмма.

Решение.

См. теорему Вариньона.

2.2. Конкурсные задачи.

Рассмотрим задачи на бимедианы четырехугольника и теорему Вариньона, которые взяты нами с различных математических конкурсов и олимпиад.

Задача 4.

Пусть K,L,M,N– середины сторон выпуклого четырехугольника ABCD(см. рис. 8). Докажите, что

а) , где – угол между бимедианами четырехугольника;

б) ,где – угол между диагональю AC и бимедианой LN.

Решение.

а)  Так как ABCD - параллелограмм Вариньона, а KM и NL – бимедианы, то , где O – точка пересечения бимедиан (см. следствие 2),  (см. теорему Вариньона).

Задача 5.

Докажите, что площадь параллелограмма, образованного прямыми, проходящими через вершины выпуклого четырехугольника и параллельными его диагоналям, в два раза больше площади исходного четырехугольника (рис.9).

Решение.

;

Так как AMOL, MONB, CKON, DKOL -  параллелограммы, то .

Отсюда получаем, что , что и требовалось доказать.

Задача 6.

Все стороны выпуклого четырехугольника площади 1 разделены на 2n равных частей, а затем точки деления на противоположных сторонах соединены так, чтобы получилась «косоугольная шахматная доска», состоящая из белых и черных «клеток» (см. рис. при n = 2). Доказать, что сумма площадей всех белых «клеток» равна сумме площадей всех черных «клеток» (рис.10).

Решение.

Из следствия 2 следует, что точки пересечения отрезков на этой доске делят каждый на равные части.

Тогда в любом «маленьком» четырехугольнике (рис.10),куда входят ровно две белые и две черные клетки, выполняются условия теоремы о бабочках. Нужное равенство установлено.

Задача 7 .

На продолжениях сторон выпуклого четырехугольника ABCD выбраны точки  так, что  и точка  A  находится между и B, точка B – между и C, точка C – между и D, точка D – между  и A. докажите, что (рис.11).

Решение.

;

;

;

;

;

;

Отсюда получаем, что .

Задача 8.

Пусть L и N – середины противоположных сторон BC и AD четырехугольника ABCD (рис. 12). Доказать, что площадь четырехугольника LPNQ равна сумме площадей треугольников ABP и CQD.

Решение.

Покажем, что

.

В треугольнике ACD медиана CN делит его на два треугольника равной площади, а в треугольнике ABC медиана AL делит его на два равновеликих треугольника. Так как ,то . аналогично устанавливается нужное равенство и для четырехугольника NBLD .

Теперь утверждение задачи следует из того, что четырехугольники ALCN и NBLD покрывают внутри четырехугольника ABCD два раза четырехугольник LPNQ и не покрывают треугольники ABP и CQD, а их сумма их площадей равна площади четырехугольника ABCD. Площадь четырехугольника, с другой стороны, равна сумме площадей шести треугольников (в том числе и треугольников ABP и CQD) и интересующего нас четырехугольника LPNQ.

3.Заключение.

Тема работы посвящена бимедианам четырехугольника и теореме Вариньона. Эти замечательные понятия не входят в программу по геометрии для средней школы. Однако при решении целого класса задач эти понятия позволяют легко получить решение, в то время когда традиционные подходы приводят к громоздким и утомительным преобразованиям.

Литература.

  1. Погорелов А. В. Геометрия: Учеб. для 7 – 11 кл. сред. шк.- М.: Просвещение,1990.- 384 с.
  2. Штейнгауз Г.Математический калейдоскоп. – М.:наука,1981.
  3. Прасолов В.В. задачи по планиметрии. – Т.1, 2. – М.: Наука,1995.
  4. Коксетер Г. С. М., Грейтцер С.Л. Новые встречи с геометрией. – М.: Наука,1978.
  5. В. Вавилов, П. Красников. Бимедианы четырехугольника//Математика. 2006 - №22.


По теме: методические разработки, презентации и конспекты

Презентация "Сказка о четырехугольниках"

Сказка о приключениях квадрата, прямоугольника, параллелограмма...

Четырехугольники

Виды четырехугольников. Презентация может быть использована на уроках изучения нового материла, повторения....

Разработка урока-соревнования в 8 классе по геометрии на тему "Четырехугольники. Свойства, признаки и площади четырехугольников"

Материал урока систематизирует и обобщает знания о четырехугольниках, их свойствах, признаках, площадях...

Учебный элемент к уроку геометрии по теме: "Четырехугольники. Формулы для нахождения площадей четырехугольников "

Учебный элемент содержит теоретический материал по данной теме и примеры задач....

План-конспект по теме «Критерии вписанных четырехугольников. Задачи на доказательство, что около четырехугольника можно описать окружность.»

План-конспект по теме «Критерии вписанных четырехугольников. Задачи на доказательство, что около четырехугольника можно описать окружность.»...

Презентация к уроку "Четырехугольники. Свойства четырехугольников. Решение задач" 8 класс

Презентация к уроку "Четырехугольники. Свойства четырехугольников. Решение задач" 8 класс...