Главные вкладки

    Урок разноуровневого обобщающего повторения по теме: «Решение тригонометрических уравнений».
    план-конспект урока по алгебре (10 класс) на тему

    Обобщение теоретических знаний по теме "Решение тригонометрических уравнений", рассмотреть методы решения тригонометрических уравнений базового и повышенного уровня сложности. Дается разноуровневая самостоятельная работы.

    Скачать:

    ВложениеРазмер
    Microsoft Office document icon pelipenko_urok.doc755.5 КБ

    Предварительный просмотр:

                                                                                      Учитель математики:

                                                                                      Пелипенко И.Н. 

                                                                                      Краснодарский край,  

                                                                                      Крыловской район,

                                                                                      ст. Октябрьская.

                                                                                      МОУ СОШ №30.

    Урок разноуровневого обобщающего повторения по теме:

    «Решение тригонометрических уравнений».

    (длительность урока – 45 мин)

       Урок разработан для учащихся 10 класса, проходил в начале января 2008г. в школе №30 г. Крыловского района. Тема урока выбрана на основании анализа  результатов краевой диагностической работы в данном классе, которая выявила, что учащиеся класса еще не в полной мере усвоили тему «Решение тригонометрических уравнений ». В классе 17 учащихся.

    По результатам краевой диагностической работы выявлено, что:

    • 4 (23,5%) учащихся класса справляются с заданиями по данной теме на базовом уровне от 90 до 100 %;
    • 9 (53%) учащихся справились с заданиями на эту тему на 50% – 80 % (на базовом уровне);
    • 4(23,5%)  учащихся с заданиями на указанную тему справились менее чем на 50 % .

    Перед началом урока учащиеся рассаживаются в соответствии с тремя уровнями подготовки на определенные ряды. При этом учащиеся знают, что по мере усвоения материала они могу переходить в следующую по уровню подготовки группу.

    Цель урока. Обобщить теоретические знания по теме: «Решение тригонометрических уравнений», рассмотреть методы решения тригонометрических уравнений базового и повышенного уровня сложности, развивать качества мышления: гибкость, целенаправленность, рациональность. Организовать работу учащихся по указанной теме на уровне, соответствующем уровню уже сформированных знаний.

                I этап урока – организационный (1 минута)

              Учитель сообщает учащимся тему урока, цель и поясняет, что во время урока постепенно будет использоваться тот раздаточный материал, который находится на партах.

    II  этап урока (12 минут)

    Повторение теоретического материала по теме

    «Тригонометрические уравнения»

    Учитель обращается к учащимся с вопросом: «Какие уравнения называются тригонометрическими? »

    Определение. Тригонометрическими называются уравнения, в которых переменная содержится под знаком тригонометрических функций.

             Какие виды тригонометрических уравнений вы знаете?

    -  простейшие тригонометрические уравнения,

    -  однородные (1 и 2 степеней)

    - квадратные уравнения относительно одной из тригонометрических

       функций,

    -  неоднородные.

             Какие уравнения называются простейшими тригонометрическими уравнениями?

           Определение.  Простейшими тригонометрическими уравнениями называются уравнения вида sin x =a, (где |a| ≤ 1), cos x =a,( где |a| ≤ 1),

    tg x =a, (где  -∞ < a < +∞)  a – действительное число.

            Какие уравнения называются однородными?

           Определение.  Уравнения вида asinx + bcosx =0 - называется однородным тригонометрическим уравнением первой степени,

     asin 2x + bsinx cosx +  ccos 2x =0 – тригонометрическим уравнением второй степени.

            Какие уравнения называются квадратными?

           Определение. Уравнения вида asin 2x + bsinx = с (acos 2x + bcosx = c,

     atg 2x + btg x = c) является квадратным уравнением относительно sinx, (cosx, tgx).

            Какие уравнения называются не однородными?

           Определение. Уравнения вида asinx + bcosx =c, где a≠0, b≠0, c≠0 называется неоднородным тригонометрическим уравнением.  

           Какие способы решения тригонометрических уравнений вы знаете?

        - введение новой переменной,

        - разложение на множители,

        - с помощью формул понижения степени,

        - введение вспомогательного угла,

        - использование универсальной подстановки и др.

      После ответа учащихся на экран проектируются некоторые способы решения тригонометрических уравнений. 

    Способы решения некоторых тригонометрических уравнений.

    1. Введение новой переменной:

    №1. 2sin²x – 5sinx + 2 = 0.                              №2. tg  + 3ctg  = 4.

       Пусть  sinx = t, |t|≤1,           Пусть  tg  = z,

       Имеем:  2t² – 5t + 2 = 0.           Имеем:  z +  = 4.

    2. Разложение на множители:

    2sinx cos5x – cos5x = 0; cos5x (2sinx – 1) = 0.

    Имеем:   cos5x = 0,

                    2sinx – 1 = 0;…

    3. Однородные тригонометрические уравнения:

    I степени                                                II степени

    a sinx + b cosx = 0, (a,b ≠ 0).                        a sin²x + b sinx cosx + c cos²x = 0.

    Разделим  на  cosx ≠ 0.                                1) если а ≠ 0, разделим на cos²x ≠0

    Имеем:  a tgx + b = 0; …                           имеем:  a tg²x + b tgx + c = 0.

    2) если а = 0, то

     имеем:  b sinx cosx + c cos²x =0;…

    4.Неоднородные тригонометрические уравнения:

    Уравнения вида: asinx + bcosx = c

                 4sinx + 3cosx = 5.

    Показать два способа:

    1)применение универсальной подстановки:

        sinx = (2tg x/2) / (1 +tg2x/2);

        cosx = (1- tg2x/2) / (1+tg2x/2);

    2)введение вспомогательного аргумента:

    4sinx+3cosx =5

    Разделим обе части на 5:

    /5cosx =1

    Т. к.  (4/5)2 +(3/5)2 = 1, то пусть

    4/5 = sinφ;     3/5=cosφ, где 0< φ<π/2, тогда

    sinφsinx + cosφcosx = 1

    cos(x-φ) = 1

    x-φ= 2πn, n € Z

    x = 2πn + φ, n € Z

    φ = arccos3/5,   значит, x = arcos 3/5 +2πn, n € Z/

             Ответ: arccos3/5 + 2πn, n € Z

    3)Решение уравнений с применением формул понижения степени: 6sin2x + 2sin22x = 5

    4)Применение формул двойного и тройного аргументов.

                 

                       a) 2 sin4xcos2x   =  4cos32x – 3cos2x

                         cos6x +cos2x   =       cos6x

    III  этап урока (4 минут)

    Выполнение тестового задания

     Учитель предлагает учащимся применить только что сформулированные теоретические факты к решению задач.

       После ответа учащихся на экран проектируются задание. Задание проводится в виде теста. Учащимися заполняется бланк ответов, находящийся у них на партах. 

         Задание на проекторе.

       Предложите способ решения данного тригонометрического уравнения:

    1)приведение к квадратному;

    2)приведение к однородному;

    3)разложение на множители;

    4)понижение степени;

    5)преобразование суммы тригонометрических функций в произведение.

       

       Бланк ответов.

    Вариант  I

              Уравнение

           Способы решения

       1              

       2              

       3              

      4              

      5            

    3 sin²x +  cos²x = 1 -  sinx cosx

    4 соs²x - cosx – 1 = 0

    2 sin² x/2 + cosx = 1

     cosx  + cos3x = 0

    2 sinx cos5x – cos5x = 0

    Вариант II

              Уравнение

           Способы решения

       1              

       2              

       3              

      4              

      5            

    2sinxcosx – sinx = 0

    3 cos²x -  cos2x = 1

    6 sin²x + 4 sinx cosx = 1

    4 sin²x +  11sin²x = 3

     sin3x = sin17x

    Ответы:

    Вариант I                                          Вариант II

    1

    2

    3

    4

    5

    1

    +

    2

    +

    3

    +

    4

    +

    5

    +

     

    1

    2

    3

    4

    5

    1

    +

    2

    +

    3

    +

    4

    +

    5

    +

           

    IV этап урока (5 минут)

    Повторение формул для решения уравнений

            Проговорите  формулы для решения простейших тригонометрических уравнений.

          Формулы корней тригонометрических уравнений.

    Общие

    Частные

    Уравнение

    Формула корней

    Уравнение

    Формула корней

    1. sinx = a, |a|≤1

    x = (-1)narcsin a + πk,

    k є Z

    1. sinx = 0

    x = πk, k є Z

    2. cosx = a, |a|≤1

    x = ±arccos a + 2πk,

    k є Z

    2. sinx = 1

    x =  + 2πk, k є Z

    3. tg x = a

    x = arctg a + πk, k є Z

    3. sinx = –1

    x = – + 2πk, k є Z

    4. ctg x = a

    x = arcctg a + πk,k є Z

    4. cosx = 0

    x =  + πk, k є Z

    5. cosx = 1

    x = 2πk, k є Z

    6. cosx = –1

    x = π + 2πk, k є Z

    V  этап урока (5 минут)

    Устная работа по решению простейших задач на тему   «Тригонометрические уравнения»

    Учитель предлагает учащимся применить только что сформулированные теоретические факты к решению уравнений. На экран проектируется тренажёр для устной работы по теме: «Тригонометрические уравнения»

    Решить уравнения.

    sin x = 0              cos x = 1            tg x = 0           ctg x = 1             sin x = -1/2                    sin x = 1              cos x = 1/2                sin x = -√3/2        cos x = √2/2       sin x = √2/2    cos x = √3/2                tg x = √3         sin x = 1/2                    sin x = -1           cos x = -1/2     sin x = √3/2               tg x = -√3         ctg x = √3/3          tg x = -√3/3          ctg x = -√3   cos x – 1 =0        2 sin x – 1 =0         2ctg x  + √3 = 0  

                           

    VI  этап урока (15 минут)

    Разноуровневая самостоятельная работа

    Учитель выдает задания для самостоятельной работы, сообщая учащимся, что на ее выполнение отводится 15 минут. Учителем подготовлены карточки трех цветов для удобства ориентации по уровням сложности.

    Учащимся 1-й группы учитель выдал зеленые карточки с задачами повышенного уровня сложности в 4-х вариантах.

    Для учащихся 2-й группы учитель выдал розовые карточки в 4-х вариантах с разнообразными заданиями базового уровня сложности.

    Для учащихся 3-й группы учителем составлены желтые карточки в 4-х вариантах с заданиями базового уровня сложности. Учащиеся 3-й группы - это, как правило, учащиеся со слабой математической подготовкой,

     они будут выполнять задания под контролем учителя.

    Все варианты содержат два вычислительных задания и четыре задания на рассмотренную на уроке тему.

    Вместе с заданиями учащиеся получают бланки для выполнения заданий.

    Желтая карточка № 1

    1. Найдите значение выражения    ,    при   .

    1)

    2)

    3

    3)

    1

    4)

    2. Вычислите:      .

    1)

    6

    2)

    12

    3)

    4)

    3. Решите уравнение    .

    1)

    3)

    2)

    4)

    4.  Решите уравнение    .

    1)

    3)

    2)

    4)

    5. Решите уравнение        .

    1)

    3)

    2)

    4)

    Желтая карточка № 2

    1. Упростите выражение    .

    1)

    2)

    3)

    4)

    2.  Вычислите:    .

    1)

    6

    2)

    3)

    4)

    3.  Решите уравнение    .

    1)

    3)

    2)

    4)

    4. Решите уравнение    .

    1)

    3)

    2)

    4)

    5. Решите уравнение    .

    1)

    3)

    2)

    4)

     Желтая карточка № 3

    1. Вычислите      .

    1)

    250

    2)

    70

    3)

    10

    4)

    430

    2.  Вычислите:    .

    1)

    2)

    6

    3)

    – 6

    4)

    3. Решите уравнение    .

    1)

    3)

    2)

    4)

    4. Решите уравнение    .

    1)

    3)

    2)

    4)

    5. Решите уравнение    .

    1)

    3)

    2)

    4)

      Желтая карточка № 4

    1.Упростите выражение  .

    1)

    2)

    3)

    4)

    2.  Вычислите:    .

    1)

    – 15

    2)

    15

    3)

    4)

     3. Решите уравнение    .

    1)

    3)

    2)

    4)

    4. Решите уравнение    .

    1)

    3)

    2)

    4)

    5. Решите уравнение    .

    1)

    3)

    2)

    4)

    Розовая карточка № 1

    1. Вычислите:        .

    1)

    2)

    3)

    2

    4)

    4

    2. Найдите значение выражения  , при  .

    1)

    7

    2)

    3)

    4)

    – 7

    3. Решите уравнение    .

    1)

    3)

    2)

    4)

    4. Решите уравнение    .

    1)

    3)

    2)

    4)

    5. Решите уравнение    .

    1)

    3)

    2)

    4)

    Розовая карточка № 2

    1. Вычислите:        .

    1)

    0,1

    2)

    0,25

    3)

    1

    4)

    5

    2. Найдите значение выражения  , при  .

    1)

    2)

    2

    3)

    4)

    3. Решите уравнение    .

    1)

    3)

    2)

    4)

    4. Решите уравнение    .

    1)

    3)

    2)

    4)

    5. Решите уравнение    .

    1)

    3)

    2)

    4)

     

    Розовая карточка № 3

    1. Вычислите:        .

    1)

    3

    2)

    3)

    4)

    2. Найдите значение выражения  , при  .

    1)

    2)

    3)

    4

    4)

    2

    3. Решите уравнение    .

    1)

    3)

    2)

    4)

     4. Решите уравнение    .

    1)

    3)

    2)

    4)

    5. Решите уравнение    .

    1)

    3)

    2)

    4)

    Розовая карточка № 4

    1. Вычислите:        .

    1)

    3

    2)

    5

    3)

    15

    4)

    75

    2.  Найдите значение выражения  , при  .

    1)

    8

    2)

    2

    3)

    1

    4)

    3. Решите уравнение    .

    1)

    3)

    2)

    4)

     

    4. Решите уравнение    .

    1)

    3)

    2)

    4)

    5. Решите уравнение    .

    1)

    3)

    2)

    4)

    Зеленая карточка №1

    1. Решите уравнение    

    2. Решите уравнение . 

     Зеленая карточка №2

    1. Решите уравнение     .

    2. Решите уравнение  .

    Зеленая карточка №3

    1. Решите уравнение     .

    2. Решить уравнение .

    Зеленая карточка №4

    1. Решите уравнение     .

    2. Решить уравнение .

    Ответы:

    Желтая карточка                                        

     задание

    вариант

    №1

    №2

    №3

    №4

    №5

    1

    2

    3

    3

    1

    4

    2

    2

    1

    4

    3

    3

    3

    2

    3

    3

    1

    3

    4

    4

    2

    3

    4

    4


    Розовая карточка

     задание

    вариант

    №1

    №2

    №3

    №4

    №5

    1

    3

    1

    1

    1

    2

    2

    4

    2

    2

    1

    1

    3

    2

    4

    2

    4

    2

    4

    3

    2

    2

    4

    1

    Зеленая карточка №1

    № 1  Решите уравнение     .

    Решение: 

    1) Преобразуем уравнение:   ,  при условии, что  Из уравнения имеем  или   

    2) Из равенства  имеем   или  .

    Из равенства  имеем  или .

    Ответ: .

    № 2.  Решите уравнение .

    Ответ:

    Решение.

     Так как ,  а  ,  то

    Ответ: 

    Зеленая карточка №2

    № 1. Решите уравнение     .

    Решение: 

    1) Преобразуем уравнение:   ,  . Из уравнения имеем   или   

    2) Из равенства    имеем  .

    Из равенства    имеем  .

    Ответ: ; .

    № 2 Решите уравнение  .

    Ответ:  , .

    Решение: 

    1) Преобразуем уравнение: , которое равносильно уравнению ,   при условии, что .

    2) Решим полученное квадратное уравнение:

    а) , отсюда , что противоречит условию .

    б) , отсюда , .

    Ответ: , .

    Зеленая карточка №3

    №1 Решите уравнение     .

    Решение: 

    1) Преобразуем уравнение:   ,  при условии, что  Из уравнения имеем  или   

    2) Из равенства  имеем   или  .

    Равенство  не имеет смысла т.к. .

    Ответ: .

    № 2. Решите уравнение .

    Ответ:

    Решение.

    Ответ: 

    Зеленая карточка №4

    № 1. Решите уравнение     .

    Решение: 

    1) Преобразуем уравнение:   ,  при условии, что  Из уравнения имеем  или   

    2) Из равенства  имеем   или  .

    Равенство  не имеет смысла т.к. .

    Ответ: .

    № 2 Решите уравнение  .

    Ответ:  , .

    Решение: 

    1) Преобразуем уравнение: , которое равносильно уравнению ,   при условии, что .

    2) Решим полученное квадратное уравнение:

    а) , отсюда , что противоречит условию .

    б) , отсюда , .

    Ответ: , .

    VII  этап урока (3 минуты)

    Подведение итогов урока, комментарии по домашнему заданию

    Учитель еще раз обращает внимание, на те типы уравнений и те теоретические факты, которые вспоминали на уроке, говорит о необходимости выучить их. Отмечает наиболее успешную работу на уроке отдельных учащихся, при необходимости выставляет отметки.

    В качестве домашнего задания учащиеся получают по варианту из предыдущей краевой контрольной работы.

    Используемая литература:

    1. А.Н. Колмогоров  «Алгебра и начала анализа 10-11».- М.: Просвещение , 2003г.
    2. А.Г. Мордкович «Алгебра и начала анализа».Учебник - М.: Мнемозина, 2003г.
    3. А.Г. Мордкович «Алгебра и начала анализа». Задачник – М.: Мнемозина,2003г.
    4. Е.А. Семенко, М.В.Фоменко, Е.Н. Белая, Г.Н.Ларкин  «Тестовые задания по алгебре и началам анализа. Базовый уровень». Под редакцией Е.А. Семенко.

    - Краснодар: «Просвещение – Юг» 2005г.

    1. Е.А. Семенко, С.Л.Крупецкий, М.В.Фоменко, Г.Н.Ларкин  «Тестовые задания для подготовки к ЕГЭ- 2008 по математике». Под редакцией Е.А. Семенко. - Краснодар: «Просвещение – Юг» 2008г.
    2. Е.А. Семенко, М.В.Фоменко, «Обобщающее повторение курса алгебры и начала анализа, Готовимся к ЕГЭ по математике». Под редакцией Е.А. Семенко. - Краснодар: «Мир Кубани»,  2007г. Часть 2.
    3. Е.А. Семенко, М.В.Фоменко, Е.С.Янушпольская, Г.Н.Ларкин  «Обобщающее повторение курса алгебры и начала анализа, Готовимся к ЕГЭ по математике». Под редакцией Е.А. Семенко. - Краснодар: «Мир Кубани»,  2006г. Часть 3.
    4. Е.А. Семенко, И.В.Васильева и др.«Обобщающее повторение курса алгебры и начала анализа, Готовимся к ЕГЭ по математике». Под редакцией Е.А. Семенко. - Краснодар: «Просвещение – Юг» 2006г. Часть 1.
    5. М.И. Сканави «Сборник задач по математике для поступающих в ВТУЗы», М.:Высшая школа 1997г.


    По теме: методические разработки, презентации и конспекты

    Урок разноуровневого обобщающего повторения по теме: «Решение дробных рациональных уравнений».

    Урок разработан для проведения разноуровневого обобщающего повторенияпо теме: «Решение дробных рациональных уравнений» в 9 классе, после очередной проверочной работы....

    Урок разноуровневого обобщающего повторения по теме: «Решение систем линейных уравнений»

    Урок проводится обобщенияповторения, и закрепления пробелов в 9х классов после диагностической работы...

    Презентация урока разноуровневого обобщающего повторения по теме: «Решение неравенств второй степени».

        Обобщить  теоретические  знания  по  темам: « Квадратичная  функция           и её свойства»...

    Урок в 11 классе разноуровневого обобщающего повторения по теме: «Решение показательных неравенств».

    Урок в 11 классе разноуровневого обобщающего повторения по теме: «Решение показательных неравенств».  Урок разработан для учащихся 11 класса, проходил в январе 2014 г .Тема урока выбрана на основ...

    Урок разноуровневого обобщающего повторения по теме: "Решение задач на проценты"

    Цель: обобщить теоретические знания, используемые при решении задач на проценты, целые числа и дроби;организовать работу учащихся на уровне, соответствующем уровню уже сформированных знаний. Обор...

    Урок разноуровневого обобщающего повторения по теме: « Решение тригонометрических уравнений».

    Урок подготовки к сдаче ЕГЭ профильного уровня.Позволяет систематизировать материал по теме "Тригонометрические уравнения"...